Study on the growth behavior and photoelectron spectroscopy of neodymium-doped silicon nanoclusters NdSin0/− (n = 8–20) with a double-hybrid density functional theory

Abstract

Structural evolution, magnetic moment, and thermochemical and spectral properties of NdSin0/− (n = 8–20) nanoclusters were studied. Optimized structures for NdSin demonstrated that the configuration with quintet ground state prefers Nd-substituted for a Si of the most stable Sin + 1 (n = 8–11) structure to Nd-linked configuration with Si9 tricapped trigonal prism subcluster (n = 12–19). Finally, the configuration prefers to Nd-encapsulated into Si cage framework (n = 20). For anion, the evolution at the quartet state prefers Nd-linked structure for n = 8–19 (excluded 9), and prefers Nd-encapsulated structure of n = 20. The spectral information including electron affinity, vertical detachment energy, and simulated photoelectron spectroscopy were also observed. The 4f electrons of Nd atom in NdSin with n = 8–10 hardly participate in bonding, but take part in remaining neutral clusters and all anionic NdSin clusters. The calculations of average bond energy, HOMO-LUMO gap, and chemical bonding analyses reveal that NdSi20 possesses perfect thermodynamic and ideal chemical stability, making it as the most appropriate constitutional units for novel multi-functional semiconductors.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. 1.

    Ohara M, Miyajima K, Pramann A, Nakajima A, Kaya K (2002). J Phys Chem A 106:3702

    CAS  Article  Google Scholar 

  2. 2.

    Koyasu K, Atobe J, Furuse S, Nakajima A (2008). J Chem Phys 129:214301

    Article  Google Scholar 

  3. 3.

    Grubisic A, Wang H, Ko YJ, Bowen KH (2008). J Chem Phys 129:54302

    Article  Google Scholar 

  4. 4.

    Grubisic A, Ko YJ, Wang H, Bowen KH (2009). J Am Chem Soc 131:10783

    CAS  Article  Google Scholar 

  5. 5.

    Hong-Guang X, Miao-Miao W, Zeng-Guang Z, Qiang S, Wei-Jun Z (2011). Chin Phys B 20:43102

    Article  Google Scholar 

  6. 6.

    Xu H, Zhang Z, Feng Y, Zheng W (2010). Chem Phys Lett 498:22

    CAS  Article  Google Scholar 

  7. 7.

    Liu Y, Yang J, Cheng L (2018). Inorg Chem 57:12934

    CAS  Article  Google Scholar 

  8. 8.

    Jaiswal S, Babar VP, Kumar V (2013). Phys Rev B 88:85412

    Article  Google Scholar 

  9. 9.

    Peng Q, Shen J (2008). J Chem Phys 128:84711

    Article  Google Scholar 

  10. 10.

    Hang TD, Hung HM, Nguyen MT (2016). Phys Chem Chem Phys 18:31054

    CAS  Article  Google Scholar 

  11. 11.

    Kenyon AJ (2005). Semicond Sci Technol 20:R65

    CAS  Article  Google Scholar 

  12. 12.

    Kristiantoro T, Idayanti N, Sudrajat N, Septiani A, Others (2016). J Phys Conf Ser 776:12030

    Article  Google Scholar 

  13. 13.

    Ma J, Gu Y, Shi L, Chen L, Qian Y (2004). Solid State Commun 132:743

    CAS  Article  Google Scholar 

  14. 14.

    Li C, Pan L, Shao P, Ding L, Feng H, Luo D, Liu B (2015). Theor Chem Accounts 134:34

    Article  Google Scholar 

  15. 15.

    Zhao G, Sun J, Gu Y, Wang Y (2009). J Chem Phys 131:114312

    Article  Google Scholar 

  16. 16.

    Liu T, Zhao G, Wang Y (2011). Phys Lett A 375:1120

    CAS  Article  Google Scholar 

  17. 17.

    Zhao R, Han J (2014). RSC Adv 4:64410

    CAS  Article  Google Scholar 

  18. 18.

    Zhao R, Chen R, Yuan Y, Gu F, Han J (2016). J Chem Sci 128:365

    CAS  Article  Google Scholar 

  19. 19.

    Zhao R, Han J, Bai J, Liu F, Sheng L (2010). Chem Phys 372:89

    CAS  Article  Google Scholar 

  20. 20.

    Cao T, Zhao L, Feng X, Lei Y, Luo Y (2009). J Mol Struct THEOCHEM 895:148

    CAS  Article  Google Scholar 

  21. 21.

    He S, Yang J (2017). Theor Chem Accounts 136:93

    Article  Google Scholar 

  22. 22.

    Farooq U, Naz S, Xu H, Yang B, Xu X, Zheng W (2020). Coord Chem Rev 403:213095

    CAS  Article  Google Scholar 

  23. 23.

    Binnemans K, Jones PT, Blanpain B, Van Gerven T, Yang Y, Walton A, Buchert M (2013). J Clean Prod 51:1

    CAS  Article  Google Scholar 

  24. 24.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, DanielsAD FÖ, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09 revision C.01. Gaussian Inc, Wallingford

    Google Scholar 

  25. 25.

    Zhang J, Dolg M (2015). Phys Chem Chem Phys 17:24173

    CAS  Article  Google Scholar 

  26. 26.

    Zhang J, Dolg M (2016). Phys Chem Chem Phys 18:3003

    CAS  Article  Google Scholar 

  27. 27.

    Adamo C, Barone V (1999). J Chem Phys 110:6158

    CAS  Article  Google Scholar 

  28. 28.

    Dolg M, Stoll H, Savin A, Preuss H (1989). Theor Chim Acta 75:173

    CAS  Article  Google Scholar 

  29. 29.

    Dolg M, Stoll H, Preuss H (1993). Theor Chem Accounts 85:441

    CAS  Article  Google Scholar 

  30. 30.

    Bergner A, Dolg M, Chle WKU, Stoll H, Preu SSH (1993). Mol Phys 80:1431

    CAS  Article  Google Scholar 

  31. 31.

    Dolg M, Stoll H, Preuss H (1989). J Chem Phys 90:1730

    CAS  Article  Google Scholar 

  32. 32.

    Cao X, Dolg M (2002). J Mol Struct THEOCHEM 581:139

    CAS  Article  Google Scholar 

  33. 33.

    Schwabe T, Grimme S (2006). Phys Chem Chem Phys 8:4398

    CAS  Article  Google Scholar 

  34. 34.

    Zhang J, Glezakou V-A, Rousseau R, Nguyen M-T (2020). J Chem Theory Comput 16:3947

    CAS  Article  Google Scholar 

  35. 35.

    Vasiliev I, Ögüt S, Chelikowsky JR (1997). Phys Rev Lett 78:4805

    CAS  Article  Google Scholar 

  36. 36.

    Zhu X, Zeng XC (2003). J Chem Phys 118:3558

    CAS  Article  Google Scholar 

  37. 37.

    Zhu XL, Zeng XC, Lei YA, Pan B (2004). J Chem Phys 120:8985

    CAS  Article  Google Scholar 

  38. 38.

    Grossman JC, Mitáš L (1995). Phys Rev Lett 74:1323

    CAS  Article  Google Scholar 

  39. 39.

    Shvartsburg AA, Liu B, Jarrold MF, Ho K (2000). J Chem Phys 112:4517

    CAS  Article  Google Scholar 

  40. 40.

    Lu T, Chen F (2012). J Comput Chem 33:580

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant No. 21863007) and by the Science and Technology Plan Project in Inner Mongolia Autonomous Region (Gran No. JH20180633).

Author information

Affiliations

Authors

Contributions

Conception and design: X. D, J.Y. Data collection and analysis: X.D., Z.Y., J.Y. Writing—original draft: X.D. Writing—review and editing: X.D., Z.Y., L.C.

Corresponding author

Correspondence to Jucai Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

If accepted, all authors agree to copyright transfer and publication.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 153 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Yang, Z. & Yang, J. Study on the growth behavior and photoelectron spectroscopy of neodymium-doped silicon nanoclusters NdSin0/− (n = 8–20) with a double-hybrid density functional theory. J Mol Model 27, 86 (2021). https://doi.org/10.1007/s00894-020-04637-5

Download citation

Keywords

  • Nd-doped silicon clusters
  • Growth pattern
  • Structure and stability
  • Spectral property
  • Magnetic moment