Ag (111) surface for ambient electrolysis of nitrogen to ammonia

Abstract

In this paper, the reaction process of N2 convert to NH3 catalyzed by Ag (111) surface was obtained through the construction of Ag (111) surface and computational simulation. The charge transfer in the reaction process and the change of N≡N bond length are described. Since the N2 reduction reaction (NRR) usually occurs under alkaline solution conditions, we calculated and described the coexistence of OH* and N2. At the same time, the co-adsorption structure of OH* and N2 at different adsorption sites was studied.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Galloway JN, Townsend AR, Erisman JW et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892

    CAS  Article  Google Scholar 

  2. 2.

    Guo J, Tsega TT, Islam IU et al (2020) Fe doping promoted electrocatalytic N2 reduction reaction of 2H MoS2. Chin Chem Lett 31(9):2487–2490

    CAS  Article  Google Scholar 

  3. 3.

    Jinrong Huo, Ling Fu, Chenxu Zhao et al (2021) Hydrogen generation of ammonia boranehydrolysis catalyzed by Fe22@Co58core-shell structure. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2020.12.059

  4. 4.

    Guo X, Du H, Qu F et al (2019) Recent progress in electrocatalytic nitrogen reduction. J Mater Chem A 7(8):3531–3543

    CAS  Article  Google Scholar 

  5. 5.

    Zhang X, Kong RM, Du H et al (2018) Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions. Chem Commun 54(42):5323–5325

    CAS  Article  Google Scholar 

  6. 6.

    Guo C, Ran J, Vasileff A et al (2018) Rational design of electrocatalysts and photo (electro) catalysts for nitrogen reduction to ammonia (NH 3) under ambient conditions. Energy Environ Sci 11(1):45–56

    CAS  Article  Google Scholar 

  7. 7.

    Wang Y, Li Q, Shi W et al (2020) The application of metal-organic frameworks in electrocatalytic nitrogen reduction. Chin Chem Lett 31(7):1768–1772

    CAS  Article  Google Scholar 

  8. 8.

    Chen H, Zhu X, Huang H et al (2019) Sulfur dots–graphene nanohybrid: a metal-free electrocatalyst for efficient N 2-to-NH 3 fixation under ambient conditions. Chem Commun 55(21):3152–3155

    CAS  Article  Google Scholar 

  9. 9.

    Deng J, Iñiguez JA, Liu C (2018) Electrocatalytic nitrogen reduction at low temperature. Joule 2(5):846–856

    CAS  Article  Google Scholar 

  10. 10.

    Seh ZW, Kibsgaard J, Dickens CF et al (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321)

  11. 11.

    Kumar RD, Wang Z, Li C et al (2019) Trimetallic PdCuIr with long-spined sea-urchin-like morphology for ambient electroreduction of nitrogen to ammonia. J Mater Chem A 7(7):3190–3196

    CAS  Article  Google Scholar 

  12. 12.

    Jie S, Kong W et al (2020) Recent advances of MXene as promising catalysts for electrochemical nitrogen reduction reaction. Chin Chem Lett 31(04):46–53

    Google Scholar 

  13. 13.

    Liu HM, Han SH, Zhao Y et al (2018) Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction. J Mater Chem A 6(7):3211–3217

    CAS  Article  Google Scholar 

  14. 14.

    Wang H, Li Y, Li C et al (2019) One-pot synthesis of bi-metallic PdRu tripods as an efficient catalyst for electrocatalytic nitrogen reduction to ammonia. J Mater Chem A 7(2):801–805

    CAS  Article  Google Scholar 

  15. 15.

    Huang H, Xia L, Shi X et al (2018) Ag nanosheets for efficient electrocatalytic N2 fixation to NH3 under ambient conditions. Chem Commun 54(81):11427–11430

    CAS  Article  Google Scholar 

  16. 16.

    Tosoni S, Li C, Schlexer P et al (2017) CO adsorption on graphite-like ZnO bilayers supported on Cu (111), Ag (111), and Au (111) surfaces. J Phys Chem C 121(49):27453–27461

    CAS  Article  Google Scholar 

  17. 17.

    Huš M, Hellman A (2018) Ethylene epoxidation on Ag (100), Ag (110), and Ag (111): a joint ab initio and kinetic Monte Carlo study and comparison with experiments. ACS Catal 9(2):1183–1196

    Article  Google Scholar 

  18. 18.

    Li H, Chai W, Henkelman G (2019) Selectivity for ethanol partial oxidation: the unique chemistry of single-atom alloy catalysts on Au, Ag, and Cu (111). J Mater Chem A 7(41):23868–23877

    CAS  Article  Google Scholar 

  19. 19.

    Zhao B, Wang GC (2019) Theoretical investigation of propylene epoxidation on Ag (111) by molecular oxygen: Na (K, Cl) effects. J Phys Chem C 123(28):17273–17282

    CAS  Article  Google Scholar 

  20. 20.

    Huang H, Xia L, Shi X et al (2018) Ag nanosheets for efficient electrocatalytic N 2 fixation to NH 3 under ambient conditions. Chem Commun 54(81):11427–11430

    CAS  Article  Google Scholar 

  21. 21.

    Zhang Q, Shen Y, Hou Y et al (2019) Composition-dependent electrochemical activity of Ag-based alloy nanotubes for efficient nitrogen reduction under ambient conditions. Electrochim Acta 321:134691

    CAS  Article  Google Scholar 

  22. 22.

    Li X, Xie H, Mao J (2020) Ag nanoparticles-reduced graphene oxide hybrid: an efficient electrocatalyst for artificial N 2 fixation to NH 3 at ambient conditions. J Mater Sci 55(12):5203–5210

    CAS  Article  Google Scholar 

  23. 23.

    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953

    Article  Google Scholar 

  24. 24.

    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    CAS  Article  Google Scholar 

  25. 25.

    Perdew JP et al (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671

    CAS  Article  Google Scholar 

  26. 26.

    Kresse G, Hafner J (1993) Ab initio molecular dynamics for open-shell transition metals. Phys Rev B 48:13115

    CAS  Article  Google Scholar 

  27. 27.

    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    CAS  Article  Google Scholar 

  28. 28.

    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864

    Article  Google Scholar 

  29. 29.

    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  30. 30.

    Grimme S, Antony J, Ehrlich S, Krieg S (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  31. 31.

    Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456

    CAS  Article  Google Scholar 

  32. 32.

    Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9904

    CAS  Article  Google Scholar 

  33. 33.

    Henkelman G, Jónsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113:9978–9985

    CAS  Article  Google Scholar 

Download references

Funding

This research was funded by the Scientific Research Program Funded by the Shaanxi Provincial Education Department (Program No.20JK0676).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chao-Zheng He.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huo, JR., Wang, J., Yang, HY. et al. Ag (111) surface for ambient electrolysis of nitrogen to ammonia. J Mol Model 27, 38 (2021). https://doi.org/10.1007/s00894-020-04628-6

Download citation

Keywords

  • Ag (111) surface
  • Catalyst
  • N2 fixation
  • Nitrogen reduction reaction