Skip to main content

Advertisement

Log in

An analysis of structural phase transition and allied properties of cubic ReN and MoN compounds

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

A Correction to this article was published on 19 January 2021

This article has been updated

Abstract

The present work aims at the study of structural, elastic, electronic, and thermodynamic properties of transition metal nitrides: ReN and MoN in the zinc-blende (B3) phase. The plane wave pseudopotential and norm-conserving pseudopotential have been applied in Quantum-Espresso code based on density-functional theory (DFT). The results show a first-order phase transition from B3 to B1 (rock-salt) structure at 42 GPa and 2.5 GPa for ReN and MoN respectively. The elastic behaviors of these compounds are also unfolded in this work. The brittleness of the ReN and ductility of MoN is identified with the help of Pugh’s index and Poisson’s ratio. The strong anisotropic behaviors of both compounds are detected under the influence of pressure. The electronic and bonding features of proposed compounds are evaluated by means of band structures, the density of states (DOS), Fermi surface, and charge density plots. The obtained results forecast the metallic behavior and ionic bonding of ReN and MoN in both phases: B3 and B1. Additionally, various thermodynamic properties are also investigated under high pressures and temperatures (from 0 to 2000 K). Conceivably, these properties are reported for the first time in the B3 structure of these compounds and will be useful for many applications in modern technologies as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Change history

References

  1. Wu ZG, Chen XJ, Struzhkin VV, Cohen RE (2005). Phys Rev B 71:214103

    Article  Google Scholar 

  2. Friedrich A, Winkler B, Bayarjargal L, Morgenroth W, Juarez Arellano EA, Milman V, Refson K, Kunz M, Chen K (2010). Phys Rev Lett 105:085504

    Article  Google Scholar 

  3. Yamanaka S, Hotehama K, Kawaji H (1998). Nature (London) 392:580

    Article  CAS  Google Scholar 

  4. Zerr A, Miehe G, Boehler R (2003). Nat Mater 2:185

    Article  CAS  Google Scholar 

  5. Soignard E, Shebanova O, McMillan PF (2007). Phys Rev B 75:014104

    Article  Google Scholar 

  6. Dar SA, Srivastava V, Sakalle UK (2017). J Electron Mater. https://doi.org/10.1007/s11664-017-5731-2

  7. Ali Z, Ahmad I, Amin B (2012). Intermetallics 13:287

    Article  Google Scholar 

  8. Lee JH, Rabe KM (2010). Phys Rev Lett 104:207204

    Article  Google Scholar 

  9. Srinvasan G, Rasmussen ET, Jevin BJ, Hayes R (2002). Phys Rev B 65:134402

    Article  Google Scholar 

  10. Van Doorn RHE, Bouwmeester HJM, Burgraap AJ (1998). Solid State Ionics 111:263

    Article  Google Scholar 

  11. Derras M, Hamad N, Derras M, Gessoum A (2013). Results Phys 3:219

    Article  Google Scholar 

  12. Ali Z, Ahmad I, Khan I, Amin B (2012). Intermetallics 31:287

    Article  CAS  Google Scholar 

  13. Ali Z, Khan I, Ahmad I, Naeem S, Rahnamaye Aliabad HA, Asadabidi SJ, Zhang Z (2013). Phys B 423:16

    Article  CAS  Google Scholar 

  14. Ali Z, Shafiq M, Asadabidi SJ, Rahnamaya HA, Abid A, Khan I, Ahmad I (2014). Comput Mater Sci 81:141

    Article  CAS  Google Scholar 

  15. Wang Y, Yao T, Li H, Lian J, Li J, Li Z, Zhang J, Gou H (2012). Comput Mater Sci 56:116–121

    Article  CAS  Google Scholar 

  16. Patil SKR, Mangale NS, Khare SV, Marsillac S (2008). Thin Solid Films 517:824–827

    Article  CAS  Google Scholar 

  17. Kaner RB, Gilman JJ, Tolbert SH (2005). Science 308:1268–1269

    Article  CAS  Google Scholar 

  18. Benyelloul K, Seddik L, Bouhadda Y, Bououdina M, Aouragb H, Khodja K (2017). J Phys Chem Solids 111:229–237

    Article  CAS  Google Scholar 

  19. Lei HR, Zhu J, Hao YJ, Zhang L, Yu BR, Chen LQ, Zou YC (2015). Physica B 458:124–131

    Article  CAS  Google Scholar 

  20. Rajeswarapalanichamy R, Kavitha M, Sudha Priyanga G, Iyakutti K (2015). J Phys Chem Solids 78:118–126

    Article  CAS  Google Scholar 

  21. Asvini meenaatci AT, Rajeswarapalanichamy R, Iyakutti K (2011). Physica B 406:3303–3307

    Article  CAS  Google Scholar 

  22. Li YL, Zeng Z (2009). Solid State Commun 149:1591–1595

    Article  CAS  Google Scholar 

  23. Wang HY, Yan P, Xu L, Zhou DW (2019). Phase Transit. https://doi.org/10.1080/01411594.2019.1610759

  24. Bannikov VV, Shein IR, Ivanovskii AL (2011). Phys Status Solidi B 248:1369–1374

    Article  CAS  Google Scholar 

  25. Zheng X, Wang H, Yu X, Feng J, Shen X, Zhang S, Yang R, Zhou X, Xu Y, Yu R, Xiang H, Hu Z, Jin C, Zhang R, Wei S, Han J, Zhao Y, Li H, Wang S (2018). Appl Phys Lett 113:221901

    Article  Google Scholar 

  26. Chen W, Jiang JZ (2010). J Alloys Compd 499:243–254

    Article  CAS  Google Scholar 

  27. Runge E, Gross EKU (1984). Phys Rev Lett 52:997

    Article  CAS  Google Scholar 

  28. Giannozzi P, Baroni S, Banoni N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I (2009). J Phys Condens Matter 21:395502

    Article  Google Scholar 

  29. Troullier N, Martins JL (1991). Phys Rev B 43:1993

    Article  CAS  Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  31. Monkhorst HJ, Pack JD (1976). Phys Rev B 13:5188

    Article  Google Scholar 

  32. Golesorkhtabar R, Pavone P, Spitaler J, Puschnig P, Draxl C (2013). Comput Phys Commun 184:1861

    Article  CAS  Google Scholar 

  33. Suna Z, Li S, Ahujab R, Schneida JM (2004). Solid State Commun 129:589

    Article  Google Scholar 

  34. Voigt W (1889). Ann Phys 274:573–587

    Article  Google Scholar 

  35. Reuss A (1929). Z Ang Math Mech 9:49–58

    Article  CAS  Google Scholar 

  36. Hill R (1953). R: Proc Phy Soc London 65:909

    Google Scholar 

  37. Haines J, Leger JM, Bocquillon G (2001). Annu Rev Mater Res 31:1

    Article  CAS  Google Scholar 

  38. Birch F (1947). Phys Rev 71(11):809

    Article  CAS  Google Scholar 

  39. Pugh SF (1954). Philos Mag 45:823–843

    Article  CAS  Google Scholar 

  40. Blanco MA, Francisco E, Luaña V (2004). Comput Phys Commun 158:57

    Article  CAS  Google Scholar 

  41. Petit AT, Dulong PL (1891). Ann Chim Phys 10:395

    Google Scholar 

Download references

Acknowledgments

Author 2 is grateful to Mr. Talal Ali Al Naqbi, Line manager, Ministry of Education, UAE for his kind support and motivation.

claims and standards.

Availability of data and material

All the data, material and codes used in this work are strictly following their terms and conditions for publication

Code availability

All the codes used in the work is as per the published

Author information

Authors and Affiliations

Authors

Contributions

All authors are contributed collectively for the completion of the work.

Corresponding author

Correspondence to Madhu Sarwan.

Ethics declarations

Conflicts of interest/competing interests

The authors declare that they have no conflict of interest.

Ethics approval

This work follows all the ethics for publication.

Consent to participate

The work is carried out with the consent from responsible authorities.

Consent for publication

No objections are there from any author or affiliated institution.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The presentation of Fig. 8 was incorrect.

Highlights

• Phase transition from B3→B1 for ReN and MoN are observed with the assist of density functional theory.

• Our results show brittle/ductile nature of ReN and MoN compounds.

• Pressure dependence of elastic properties are reported for the first time.

• Electronic property calculations, predict the metallic behaviour and ionic bonding of both compounds.

• Thermodynamic properties are calculated for the first time.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarwan, M., M., F. & Singh, S. An analysis of structural phase transition and allied properties of cubic ReN and MoN compounds. J Mol Model 27, 1 (2021). https://doi.org/10.1007/s00894-020-04615-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04615-x

Keywords

Navigation