Interaction investigation of single and multiple carbon monoxide molecules with Fe-, Ru-, and Os-doped single-walled carbon nanotubes by DFT study: applications to gas adsorption and detection nanomaterials


Due to the large surface area and unique electronic property, single-wall carbon nanotube (SWCNT) is being used for adsorption and detection nanomaterials, which can be used to reduce the CO pollution effect on the environment. In the present work, the adsorptions of single and multiple CO molecules on pristine and transition metal (TM = Fe-, Ru-, and Os)-doped SWCNT were investigated in terms of geometric, energetic, and electronic properties using density functional theory calculation. Calculated results display that the adsorption of CO molecule on the SWCNTs is energetically favorable. The TM-doped SWCNT are more highly interactive to CO adsorption than that of pristine SWCNT. An Os-doped SWCNT displays the strongest interaction with single and multiple CO molecules comparing with the Fe- and Ru-doped SWCNT. The TM doping on SWCNT can induce the charge transfer between CO molecule and the SWCNT. The energy gap and density of state are clearly changed when CO molecule interacts with TM-doped SWCNT, resulting in dramatic changes of their electronic properties. Therefore, TM-doped SWCNT are possibly used as potential CO storages/absorbents or sensor material for CO detection in the environment.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Klabunde KJ, Richards RM (2009) Nanoscale materials in chemistry. John Wiley & Sons, Inc., Hoboken

    Google Scholar 

  2. 2.

    Gong JR (2011) SWCNT–systhesis, characterization, properties and applications. InTech, Inc., Rijeka

    Google Scholar 

  3. 3.

    Mikhailov S (2011) Physics and applications of SWCNT–theory. InTech, Inc., Rijeka

    Google Scholar 

  4. 4.

    Kharlamova MV (2016) Advances in tailoring the electronic properties of single–walled carbon nanotubes. Prog Mater Sci 77:125–211

    CAS  Google Scholar 

  5. 5.

    Kong L, Enders A, Rahman TS, Dowben PA (2014) Molecular adsorption on graphene. J Phys Condens Matter 26:443001

    PubMed  Google Scholar 

  6. 6.

    Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) Practical chemical sensors from chemically derived SWCNT. ACS Nano 3:301–306

    CAS  PubMed  Google Scholar 

  7. 7.

    Zhang YH, Chen YB, Zhou KG, Liu CH, Zeng J, Zhang HL, Peng Y (2009) Improving gas sensing properties of SWCNT by introducing dopants and defects: a first–principles study. Nanotechnology 20(18):185504

    PubMed  Google Scholar 

  8. 8.

    Iijima S, Ichihashi T (1993) Single–shell carbon nanotubes of 1–nm diameter. Nature 363:603–605

    CAS  Google Scholar 

  9. 9.

    Zaporotskova IV, Boroznina NP, Parkhomenko YN, Kozhitov LV (2016) Carbon nanotubes: sensor properties. A review. Mod Electron Mater 2:95–105

    Google Scholar 

  10. 10.

    Llobet E (2013) Gas sensors using carbon nanomaterials: a review. Sensors Actuators B Chem 179:32–45

    CAS  Google Scholar 

  11. 11.

    Dai J, Yuan J, Giannozzi P (2009) Gas adsorption on SWCNT doped with B, N, Al, and S: a theoretical study. Appl Phys Lett 95:232105–232107

    Google Scholar 

  12. 12.

    Yoon HJ, Jun DH, Yang JH, Zhou Z, Yang SS, Cheng MMC (2011) Carbon dioxide gas sensor using a SWCNT sheet. Sensors Actuators B Chem 157:310–313

    CAS  Google Scholar 

  13. 13.

    Zhao JX, Chen Y, Fu HG (2012) Si–embedded graphene: an efficient and metal–free catalyst for CO oxidation by N2O or O2. Theor Chem Accounts 131:1242

    Google Scholar 

  14. 14.

    Azizi K, Hashemianzadeh SM, Bahramifar S (2011) Density functional theory study of carbon monoxide adsorption on the inside and outside of the armchair single–walled carbon nanotubes. Curr Appl Phys 11:776–782

    Google Scholar 

  15. 15.

    Kong J, Chapline MG, Dai HJ (2001) Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater 13:1384–1386

    CAS  Google Scholar 

  16. 16.

    Peng S, Cho K (2003) Ab initio study of doped carbon nanotube sensors. Nano Lett 3:513–517

    CAS  Google Scholar 

  17. 17.

    Zhang X, Gong X (2015) DFT, QTAIM, and NBO investigations of the ability of the Fe or Ni doped CNT to absorb and sense CO and NO. J Mol Model 21:225

    PubMed  Google Scholar 

  18. 18.

    Li KJ, Wang WC, Cao DP (2011) Metal (Pd, Pt)–decorated carbon nanotubes for CO and NO sensing. Sensors Actuators B Chem 159:171–177

    CAS  Google Scholar 

  19. 19.

    Yoosefian M, Barzgari Z, Yoosefian J (2014) Ab initio study of Pd–decorated single–walled carbon nanotube with C–vacancy as CO sensor. Struct Chem 25:9–19

    CAS  Google Scholar 

  20. 20.

    Yoosefian M, Zahedi M, Mola A, Naserian S (2015) A DFT comparative study of single and double SO2 adsorption on Pt–doped and Au–doped single–walled carbon nanotube. Appl Surf Sci 349:864–869

    CAS  Google Scholar 

  21. 21.

    Ngwashi DK (2010) Ab initio investigation of oxygen adsorption on the stability of carbon nanotube field effect transistors (CNTFETs). Solid State Commun 150:258–261

    CAS  Google Scholar 

  22. 22.

    Azizi K, Karimpanah M (2013) Computational study of Al– or P–doped single–walled carbon nanotubes as NH3 and NO2 sensors. Appl Surf Sci 285P:102–109

    Google Scholar 

  23. 23.

    Tabtimsai C, Wanno B, Ruangpornvisuti V (2013) Theoretical investigation of CO2 and NO2 adsorption onto Co–, Rh– and Ir–doped (5,5) single–walled carbon nanotubes. Mater Chem Phys 138:709–715

    CAS  Google Scholar 

  24. 24.

    Zhou Q, Wang C, Fu Z, Zhang H, Tang Y (2014) Adsorption of formaldehyde molecule on Al–doped vacancy–defected single–walled carbon nanotubes: a theoretical study. Comput Mater Sci 82:337–344

    CAS  Google Scholar 

  25. 25.

    Zhang X, Cui H, Chen D, Dong X, Tang J (2018) Electronic structure and H2S adsorption property of Pt3 cluster decorated (8,0) SWCNT. Appl Surf Sci 428:82–88

    CAS  Google Scholar 

  26. 26.

    Aguiar EC, Longo RL, da Silva JBP (2017) Modeling zigzag CNT: dependence of structural and electronic properties on length, and application to encapsulation of HCN and C2H2. J Mol Model 23:144

    PubMed  Google Scholar 

  27. 27.

    Ernst A, Zibrak JD (1998) Carbon monoxide poisoning. N Engl J Med 339:1603–1608

    CAS  PubMed  Google Scholar 

  28. 28.

    Cortés-Arriagada D, Villegas-Escobar N, Ortega DE (2018) Fe–doped graphene nanosheet as an adsorption platform of harmful gas molecules (CO, CO2, SO2 and H2S), and the co–adsorption in O2 environments. Appl Surf Sci 427:227–236

    Google Scholar 

  29. 29.

    Wanno B, Tabtimsai C (2014) A DFT investigation of CO adsorption on VIIIB transition metal–doped graphene sheets. Superlattice Microst 67:110–117

    CAS  Google Scholar 

  30. 30.

    Shukri MSM, Saimin MNS, Yaakob MK, Yahya MZA, Taib MFM (2019) Structural and electronic properties of CO and NO gas molecules on Pd–doped vacancy graphene: a first principles study. Appl Surf Sci 494:817–828

    CAS  Google Scholar 

  31. 31.

    Esrafili MD, Heydari S (2019) B-doped C3N monolayer: a robust catalyst for oxidation of carbon monoxide. Theor Chem Accounts 138:57

    Google Scholar 

  32. 32.

    Wang R, Zhang D, Sun W, Han Z, Liu C (2007) A novel aluminum–doped carbon nanotubes sensor for carbon monoxide. J Mol Struct THEOCHEM 806:93–97

    CAS  Google Scholar 

  33. 33.

    Liu Y, Zhang H, Zhang Z, Jia X, An L (2019) CO adsorption on Fe–doped vacancy–defected CNTs – a DFT study. Chem Phys Lett 730:316–320

    CAS  Google Scholar 

  34. 34.

    Wang Y, Tong YC, Yan PJ, Xu XJ, Li Z (2019) Attachment of CO to a (6, 6) CNT with a Sc adsorbate atom. Struct Chem 30:399–408

    CAS  Google Scholar 

  35. 35.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Lyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin A, Cammi R, Pomell C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich A, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz J, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PM, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) GAUSSIAN 09, Revision A.02. Gaussian Inc, Wallingford

    Google Scholar 

  36. 36.

    Becke AD (1988) Density−functional exchange−energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    CAS  Google Scholar 

  37. 37.

    Becke AD (1993) Density–functional thermochemistry. III The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  38. 38.

    Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation–energy formula into a functional of the electron density. Phys Rev B 37:785–789

    CAS  Google Scholar 

  39. 39.

    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    CAS  Google Scholar 

  40. 40.

    Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–298

    CAS  Google Scholar 

  41. 41.

    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310

    CAS  Google Scholar 

  42. 42.

    Montejo-Alvaro F, Oliva J, Herrera-Trejo M, Hdz-García HM, Mtz-Enriquez AI (2019) DFT study of small gas molecules adsorbed on undoped and N–, Si–, B–, and Al–doped graphene quantum dots. Theor Chem Acc 138:37

    Google Scholar 

  43. 43.

    Panahi Y, Sadeghi MM (2019) Application of metallofullerene towards adsorption of mustard gas: a detailed DFT study. J Inorg Organomet Polym Mater 29:1383–1389

    CAS  Google Scholar 

  44. 44.

    Tabtimsai C, Somtua T, Motongsri T, Wanno B (2018) A DFT study of H2CO and HCN adsorptions on 3d, 4d, and 5d transition metal–doped graphene nanosheets. Struct Chem 29:147–157

    CAS  Google Scholar 

  45. 45.

    Flükiger P, Lüthi HP, Portmann S (2000) MOLEKEL 4.3, Swiss center for scientific computing. Manno

  46. 46.

    O’Boyle NM, Tenderholt AL, Langner KM (2008) A library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845

    PubMed  Google Scholar 

  47. 47.

    Odom TW, Huang JL, Kim P, Lieber CM (1998) Atomic structure and electronic properties of single–walled carbon naotubes. Nature 391:62–64

    CAS  Google Scholar 

  48. 48.

    Fellah MF (2011) CO and NO adsorptions on different iron sites of Fe–ZSM–5 clusters: a density functional theory study. J Phys Chem C 115:1940–1951

    CAS  Google Scholar 

  49. 49.

    Lewis SP, Rappe AM (1995) Quantum–mechanical investigation of bonding and vibrational properties of CO–adsorbed copper. SPIE 2547:227–239

    CAS  Google Scholar 

  50. 50.

    Ao ZM, Li S, Jiang Q (2010) Correlation of the applied electrical field and CO adsorption/desorption behavior on Al–doped graphene. Solid State Commun 150:680–683

    CAS  Google Scholar 

  51. 51.

    Sun M, Xu JW, Cui Y, Wu GL, Zhang H, Li ZS (2013) Theoretical study of adsorption CO molecule on palladium–doped boron nitride nanotubes. Adv Mater Res 662:233–238

    Google Scholar 

  52. 52.

    Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85(22):3533–3539

    CAS  Google Scholar 

  53. 53.

    Velázquez-López LF, Pacheco-Ortin SM, Mejía-Olvera R, Agacino-Valdés E (2019) DFT study of CO adsorption on nitrogen/boron doped–graphene for sensor applications. J Mol Model 25:91

    PubMed  Google Scholar 

  54. 54.

    Li S (2006) Semiconductor physical electronics2nd edn. Springer, New York

    Google Scholar 

  55. 55.

    Korotcenkov G (2013) Sensing layers in work–function–type gas sensors, in: Handbook of gas sensor materials, Springer, New York

  56. 56.

    Chandiramouli R, Srivastava A, Nagarajan V (2017) First–principles insights of CO adsorption characteristics on Ge and In substituted silicene nanosheet. Silicon 9:327–337

    CAS  Google Scholar 

  57. 57.

    Ramasami P (2019) Density functional theory: advances in applications. Walter de Gruyter GmbH, Berlin/Boston

    Google Scholar 

  58. 58.

    Zhang X, Tang J, Xiao S, Zeng F, Pan C, Gui Y (2017) Nanomateials based gas sensors for SF6 decomposition components detection. Intech, Croatia

    Google Scholar 

  59. 59.

    Saikia N, Deka RC (2013) Density functional study on the adsorption of the drug isoniazid onto pristine and B–doped single wall carbon nanotubes. J Mol Model 19:215–226

    CAS  PubMed  Google Scholar 

  60. 60.

    Chen W, Tang Y, Zhao G, Teng D, Chai H, Feng Z, Dai X (2020) Gas adsorption induces the electronic and magnetic properties of metal modified divacancy graphene. J Phys Chem Solids 136:109151

    CAS  Google Scholar 

  61. 61.

    Dutta A, Pradhan AK, Qi F, Mondal P (2020) Computation-led design of pollutant gas sensors with bare and carbon nanotube supported rhodium alloys. Monatsh Chem 151:159–171

    CAS  Google Scholar 

Download references


The authors gratefully acknowledge the Computational Chemistry Center for Nanotechnology (CCCN), Department of Chemistry, Faculty of Science and Technology, and Research and Development Institute, Rajabhat Maha Sarakham University, for the facilities provided.


Our gratitude extends to Supramolecular Chemistry Research Unit (SCRU) and the Postgraduate Education and Research in Chemistry (PERCH–CIC) program in the Department of Chemistry, Faculty of Science, Mahasarakham University, for partial financial support.

Author information



Corresponding author

Correspondence to Banchob Wanno.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOC 11169 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tabtimsai, C., Rakrai, W., Phalinyot, S. et al. Interaction investigation of single and multiple carbon monoxide molecules with Fe-, Ru-, and Os-doped single-walled carbon nanotubes by DFT study: applications to gas adsorption and detection nanomaterials. J Mol Model 26, 186 (2020).

Download citation


  • Adsorption
  • Carbon monoxide
  • Carbon nanotube
  • Density functional theory
  • Transition metal doping