MEAM-based MD calculations of melting temperature for Fe

Abstract

The molecular dynamics (MD) simulations were applied to the melting transition of the BCC metal Fe using the modified embedded atom method (MEAM) potential proposed by Jin et al. [Appl. Phys. A120 (2015) 189], and the newly derived formulas were adopted to calculate the forces acting on atoms in the MD simulations. We first determined the structural and energetic properties of the effectively infinite solid with no boundaries, and then investigated the Fe samples with low-index surfaces, namely Fe(100), Fe(110), and Fe(111). The simulations show that as the temperature increases, the (111) surface firstly disorders, followed by the (100) surface, while the (110) surface remains stable up to the melting temperature. The disorder phenomenon diffuses from the surface to the entire block, and as the density of atoms on the surface decreases, the effect of the premelting phenomenon also increases, being most pronounced on Fe(111) which has the lowest surface density. This conclusion is in line with the behavior found for BCC metal V in the previous simulation study.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Liu CM, Xu C, Cheng Y et al (2016). Appl Phys A Mater Sci Process 122:22

    Google Scholar 

  2. 2.

    Ubbeldone AR (1965) Melting and crystal structure. Clarendon press, Oxford

    Google Scholar 

  3. 3.

    Ida Y (1969). Phys Rev 187:951

    Google Scholar 

  4. 4.

    Granato AV (1992). Phys Rev Lett 68:974

    CAS  PubMed  Google Scholar 

  5. 5.

    Weber TA, Stillinger FH (1984). J Chem Phys 81:5095

    Google Scholar 

  6. 6.

    Cahn RW (1986). Nature 323:668

    Google Scholar 

  7. 7.

    Cahn RW (2001). Nature 413:582

    CAS  PubMed  Google Scholar 

  8. 8.

    Kanigel A, Adler J, Polturak E (2001). Int J Mod Phys C 12:727

    CAS  Google Scholar 

  9. 9.

    Tallon JL (1978). Phyl Mag A 39:151

    Google Scholar 

  10. 10.

    Wolf D, Okamoto PR, Yip S, Lutsko JF, Kluge M (1990). J Mater Res 5:286

    CAS  Google Scholar 

  11. 11.

    Frenken JWM, van der Veen JF (1985). Phys Rev Lett 54:134

    CAS  PubMed  Google Scholar 

  12. 12.

    van der Veen JF (1991) Phase Transitions in Surface Films 2. Plenum, New York

    Google Scholar 

  13. 13.

    Trayanov A, Tossati E (1988). Phys Rev B 38:6961

    CAS  Google Scholar 

  14. 14.

    Barnett RN, Landman U (1991). Phys Rev B 44:3226

    CAS  Google Scholar 

  15. 15.

    Chen ET, Barnett RN, Landman U (1990). Phys Rev B 41:439

    CAS  Google Scholar 

  16. 16.

    Chen ET, Barnett RN, Landman U (1989). Phys Rev B 40:924

    CAS  Google Scholar 

  17. 17.

    Ohnesorge R, Lwen H, Wagner H (1994). Phys Rev E 50:4801

    CAS  Google Scholar 

  18. 18.

    Lipowsky R (1982). Phys Rev Lett 49:1575

    CAS  Google Scholar 

  19. 19.

    Lipowsky R, Breuer U, Prince KC, Bonzel HP (1989). Phys Rev Lett 62:913

    CAS  PubMed  Google Scholar 

  20. 20.

    Tomagnini O, Ercolessi F, Iarlori S, Di Tolla FD, Tosatti E (1996). Phys Rev Lett 76:1118

    CAS  PubMed  Google Scholar 

  21. 21.

    Cox H, Johnston RL, Murrel JN (1996). Surf Sci 67:373

    Google Scholar 

  22. 22.

    Stoltze P (1990). J Chem Phys 92:6306

    CAS  Google Scholar 

  23. 23.

    Stoltze P, Norskov JK, Landman U (1988). Phys Rev Lett 61:440

    CAS  PubMed  Google Scholar 

  24. 24.

    Hakkinen H, Manninen M (1992). Phys Rev B 46:1725

    CAS  Google Scholar 

  25. 25.

    Hakkinen H, Landman U (1993). Phys Rev Lett 71:1023

    CAS  PubMed  Google Scholar 

  26. 26.

    Beaudet Y, Lewis LJ, Persson M (1994). Phys Rev B 50:12084

    CAS  Google Scholar 

  27. 27.

    Broughton JQ, Gilmer GH, Jackson KA (1982). Phys Rev Lett 49:1496

    CAS  Google Scholar 

  28. 28.

    Broughton JQ, Gilmer GH (1983). J Chem Phys 79:5119

    CAS  Google Scholar 

  29. 29.

    Wang J, Li J, Yip S, Phillpot S, Wolf D (1995). Phys Rev B 52:12627

    CAS  Google Scholar 

  30. 30.

    Wang J, Li J, Yip S, Phillpot S, Wolf D (1997). Phys A 240:396

    CAS  Google Scholar 

  31. 31.

    Jin ZH, Gumbsch P, Lu K, Ma E (2001). Phys Rev Lett 87:055703

    CAS  PubMed  Google Scholar 

  32. 32.

    Sorkin V, Polturak E, Adler J (2003). Phys Rev B 68:174102

    Google Scholar 

  33. 33.

    Sorkin V, Polturak E, Adler J (2003). Phys Rev B 68:174103

  34. 34.

    Hashibon A, Adler J, Baum G, Lipson SG (1998). Phys Rev B 58:4120

    CAS  Google Scholar 

  35. 35.

    Daw MS, Baskes MI (1983). Phys Rev Lett 50:1285

    CAS  Google Scholar 

  36. 36.

    Daw MS, Baskes MI (1984). Phys Rev B 29:6443

    CAS  Google Scholar 

  37. 37.

    Zhang B, Hu W, Shu X (2003) Theory of embedded atom method and its application to materials science − atomic scale materials design theory. Hunan University Press, Changsha

    Google Scholar 

  38. 38.

    Hu WY, Shu XL, Zhang BW (2002). Comput Mater Sci 23:175

    CAS  Google Scholar 

  39. 39.

    Hu WY, Zhang BW, Huang BY, Gao F, Bacon DJ et al (2001). J Phys Condens Matter 13:1193

    CAS  Google Scholar 

  40. 40.

    Shu X (2001) Ph. D. Dissertation (Hunan University, Changsha, China)

  41. 41.

    Jin H, An J, Jong Y (2015). Appl Phys A Mater Sci Process 120:189

    CAS  Google Scholar 

  42. 42.

    Jin H, Pak J, Jong Y (2017). Appl Phys A Mater Sci Process 123:257

    Google Scholar 

  43. 43.

    Jon C, Jin H, Hwang C (2017). Radiat Eff Defects Solids 172:575

    CAS  Google Scholar 

  44. 44.

    Baskes MI (1992). Phys Rev B 46:2727

    CAS  Google Scholar 

  45. 45.

    Lutsko JF, Wolf D, Phillpot SR, Yip S (1989). Phys Rev B 40:2841

    CAS  Google Scholar 

  46. 46.

    Sun DY, Asta M, Hoyt JJ (2004). Phys Rev B 69:174103

    Google Scholar 

  47. 47.

    Handbook of Chemistry and Physics, 81st ed., edited by D. R.Lide (CRC Press, Boca Raton, 2001)

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (U1360204) and Basic Research Foundation of China (N120602003).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hak-Son Jin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, H., Kim, S., Kim, K. et al. MEAM-based MD calculations of melting temperature for Fe. J Mol Model 26, 189 (2020). https://doi.org/10.1007/s00894-020-04446-w

Download citation

Keywords

  • EAM
  • MEAM
  • Fe
  • Melting temperature
  • Molecular dynamics
  • BCC transition metal
  • BCC structure