Ab initio predictions for the reaction mechanism and orbital topological properties of the formation of Neptunimine, Plutonimine, and its side products

Abstract

Exploring the different mechanisms involved in the application of actinide is necessary to obtain a more comprehensive understanding of actinide science. In this study, the mechanisms of gas-phase Np and Pu atoms dissociating NH3 molecules forming Neptunimine and Plutonimine complexes were systematically investigated using different approaches of density functional theory. A new dehydrogenation channel was discovered. The results reveal that the intermediates HAn-NH2 are the lowest energy in the overall reaction, and the direct planar evolution dehydrogenations are the lowest energy reaction path. Besides, the mechanism of the initial complexation process is discussed on the electron localization function, atoms-in-molecules, atomic dipole moment corrected Hirshfeld atomic charges, and electron density difference analysis. The results indicate that An-N in complex I exhibits a very weak covalent interaction, and it comes down to pulling the original dipole moment of the NH3 molecule and stretched between An atom and three H atoms.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Rees NV, Compton RG (2011). Energy Environ Sci 4:1255–1260

    CAS  Article  Google Scholar 

  2. 2.

    Lan R, Irvine John TS, Tao S (2012). Int J Hydrog Energy 37:1482–1494

    CAS  Article  Google Scholar 

  3. 3.

    Tabarés FL, Ferreira JA, Ramos A, Alegre D, van Rooij G, Westerhout J, Al R, Rapp J, Drenik A, Mozeti M (2011). J Nucl Mater 415:S793–S796

    Article  Google Scholar 

  4. 4.

    de Castro A, Alegre D, Tabarés FL (2015). J Nucl Mater 463:676–679

    Article  Google Scholar 

  5. 5.

    Wang X, Andrews L, Marsden CJ (2007). Chem Eur J 13:5601–5606

    CAS  Article  Google Scholar 

  6. 6.

    Wang X, Andrews L, Marsden CJ (2008). Chem Eur J 14:9192–9201

    CAS  Article  Google Scholar 

  7. 7.

    Lanzisera DV, Andrews L (1997). J Phys Chem A 101:5082–5089

    CAS  Article  Google Scholar 

  8. 8.

    Chen M, Lu H, Dong J, Miao L, Zhou M (2002). J Phys Chem A 106:11456–11464

    CAS  Article  Google Scholar 

  9. 9.

    Zhou M, Chen M, Zhang L, Lu H (2002). J Phys Chem A 106:9017–9023

    CAS  Article  Google Scholar 

  10. 10.

    Wang X, Andrews L (2008). Organometallics 27:4885–4891

    CAS  Article  Google Scholar 

  11. 11.

    Liu X, Wang X, Xu B, Andrews L (2012). Chem Phys Lett 523:6–10

    CAS  Article  Google Scholar 

  12. 12.

    Pu Z, Li F, Qin J, Ao B, Shi P, Shuai M (2018). J Phys Chem A 122:3541–3546

    CAS  Article  Google Scholar 

  13. 13.

    Niu W, Zhang H, Li P, Gao T (2015). Int J Quantum Chem 115:6–18

    CAS  Article  Google Scholar 

  14. 14.

    Li P, Niu W, Gao T (2014). RSC Adv 4:29806–29817

    CAS  Article  Google Scholar 

  15. 15.

    Li P, Niu W, Gao T (2014). J Mol Model 21:316

    Article  Google Scholar 

  16. 16.

    Lee C, Yang W, Parr RG (1998). Phys Rev B 37:785–789

    Article  Google Scholar 

  17. 17.

    Perdew JP, Burke K, Wang Y (1996). Phys Rev B 54:16533–16539

    CAS  Article  Google Scholar 

  18. 18.

    Küchle W, Dolg M, Stoll H, Preuss H (1994). J Chem Phys 100:7535–7542

    Article  Google Scholar 

  19. 19.

    Krishnan R, Binkley JS, Seeger R, Pople JA (1980). J Chem Phys 72:650–654

    CAS  Article  Google Scholar 

  20. 20.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision B.01. Gaussian, Inc., Wallingford

    Google Scholar 

  21. 21.

    Zhao Y, Truhlar DG (2008). Theor Chem Accounts 120:215–241

    CAS  Article  Google Scholar 

  22. 22.

    van Lenthe E, Baerends EJ, Snijders JG (1993). J Phys Chem 99:4597–4601

    Article  Google Scholar 

  23. 23.

    Pantazis DA, Neese F (2011). J Chem Theory Comput 7:677–684

    CAS  Article  Google Scholar 

  24. 24.

    Weigend F (2006). Phys Chem Chem Phys 8:1057–1065

    CAS  Article  Google Scholar 

  25. 25.

    Pantazis DA, Neese F (2012). Theor Chem Accounts 131:1292

    Article  Google Scholar 

  26. 26.

    Pantazis DA, Chen XY, Landis CR, Neese F (2008). J Chem Theory Comput 4:908–919

    CAS  Article  Google Scholar 

  27. 27.

    Weigend Ahlrichs FR (2005). Phys Chem Chem Phys 7:3297–3303

    Article  Google Scholar 

  28. 28.

    Harvey JN, Aschi M, Schwarz H, Koch W (1998). Theor Chem Accounts 99:95–97

    CAS  Article  Google Scholar 

  29. 29.

    Neese F (2012). Wiley Interdiscip Rev Comput Mol Sci 2:73–78

    CAS  Article  Google Scholar 

  30. 30.

    Becke AD, Edgecombe KE (1990). J Chem Phys 92:5397–5403

    CAS  Article  Google Scholar 

  31. 31.

    Savin A, Nesper R, Wengert S, Fassler TR (1997). Angew Chem Int Ed Eng 36:1808–1832

    CAS  Article  Google Scholar 

  32. 32.

    Bader RFW (1990) Atoms in molecules. A quantum theory. Clarendon, Oxford

    Google Scholar 

  33. 33.

    Hirshfeld FL (1977). Theoret Chim Acta (Berl) 44:129–138

    CAS  Article  Google Scholar 

  34. 34.

    Lu T, Chen F (2012). J Comput Chem 33:580–592

    Article  Google Scholar 

  35. 35.

    Lu T, sobMECP program, http://sobereva.com/286. Accessed 2 Oct 2019

  36. 36.

    Lu T, Chen FW (2012). J Theor Comput Chem 11:163–183

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to Dr. Sobereva for many helpful discussions and providing us with the Multiwfn package.

Funding

This work is supported by National Natural Science Foundation of China (NSFC) (Grant No. 11604187, 11647040, 61722507, 61675121, 61705123), the Natural Science Young Foundation of Shanxi Province (Grant No. 201801D221004), the Cooperation projects of Institute of Applied Physics and Computational Mathematics, and Open Fund of Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education (Tsinghua University, China), The Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Peng Li or Jie Ma.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2215 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, P., Niu, W., Wu, J. et al. Ab initio predictions for the reaction mechanism and orbital topological properties of the formation of Neptunimine, Plutonimine, and its side products. J Mol Model 26, 163 (2020). https://doi.org/10.1007/s00894-020-04424-2

Download citation

Keywords

  • Neptunimine
  • Plutonimine
  • Ammonia
  • Activation mechanism