Binding modes of cabazitaxel with the different human β-tubulin isotypes: DFT and MD studies

Abstract

Taxanes (paclitaxel, docetaxel, cabazitaxel) are anticancer drugs as microtubule inhibitors. Following our previous studies on paclitaxel and docetaxel, in this work, we examine cabazitaxel and compare these three taxenes. The binding interaction of three taxanes with various β-tubulin isotypes is studied by homology modeling, molecular docking, and molecular dynamics simulations. The results show that the effects of docetaxel on βI-tubulin (− 29.5 kcal/mol) and of paclitaxel on βIIa-tubulin (− 25.5 kcal/mol) are much stronger than their effects on βIII-tubulin (− 17.8 kcal/mol and − 8.6 kcal/mol, respectively). However, the effect of cabazitaxel on βIII-tubulin (− 23.0 kcal/mol) is comparable with that on βI-tubulin (− 24.0 kcal/mol) and βIIa-tubulin (− 25.9 kcal/mol), consistent with the fact that overexpression of βIII-tubulin increases the drug resistance to paclitaxel and docetaxel, but has little influence for cabazitaxel. This theoretical research supports the use of cabazitaxel for patients who are resistant to the action of paclitaxel and docetaxel.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J. Clin. 68(1):7–30. https://doi.org/10.3322/caac.21442

    Article  PubMed  Google Scholar 

  2. 2.

    Yan X, Han R, Zhou J, Yu H, Yang J, Wu M (2016) Incidence, mortality and survival of female breast cancer during 2003–2011 in Jiangsu province, China. Chin J Cancer Res 28(3):321–329. https://doi.org/10.21147/j.issn.1000-9604.2016.03.06

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J (2016) Cancer statistics in China, 2015. CA Cancer J. Clin. 66(2):115–132. https://doi.org/10.3322/caac.21338

    Article  PubMed  Google Scholar 

  4. 4.

    Zeng H, Chen W, Zheng R, Zhang S, Ji JS, Zou X, Xia C, Sun K, Yang Z, Li H, Wang N, Han R, Liu S, Li H, Mu H, He Y, Xu Y, Fu Z, Zhou Y, Jiang J, Yang Y, Chen J, Wei K, Fan D, Wang J, Fu F, Zhao D, Song G, Chen J, Jiang C, Zhou X, Gu X, Jin F, Li Q, Li Y, Wu T, Yan C, Dong J, Hua Z, Baade P, Bray F, Jemal A, Yu XQ, He J (2018) Changing cancer survival in China during 2003–15: a pooled analysis of 17 population-based cancer registries. Lancet Glob. Health 6(5):e555–e567. https://doi.org/10.1016/S2214-109X(18)30127-X

    Article  PubMed  Google Scholar 

  5. 5.

    Chen JG, Chen HZ, Zhu J, Yang YL, Zhang YH, Huang PX, Chen YS, Zhu CY, Yang LP, Shen K, Qiang FL, Wang GR (2018) Cancer survival in patients from a hospital-based cancer registry, China. J. Cancer 9(5):851–860. https://doi.org/10.7150/jca.23039

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Janke C, Bulinski JC (2011) Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 12(12):773–786. https://doi.org/10.1038/nrm3227

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Conde C, Caceres A (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nat. Rev. Neurosci. 10(5):319–332. https://doi.org/10.1038/nrn2631

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Perez EA (2009) Microtubule inhibitors: differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol. Cancer Ther. 8(8):2086–2095. https://doi.org/10.1158/1535-7163.MCT-09-0366

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Giannakakou P, Gussio R, Nogales E, Downing KH, Zaharevitz D, Bollbuck B, Poy G, Sackett D, Nicolaou KC, Fojo T (2000) A common pharmacophore for epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells. Proc. Natl. Acad. Sci. 97(6):2904–2909. https://doi.org/10.1073/pnas.040546297

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Kruczynski A, Barret JM, Etievant C, Colpaert F, Fahy J, Hill BT (1998) Antimitotic and tubulin-interacting properties of vinflunine, a novel fluorinated vinca alkaloid. Biochem. Pharmacol. 55(5):635–648. https://doi.org/10.1016/s0006-2952(97)00505-4

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Lu Y, Chen J, Xiao M, Li W, Miller DD (2012) An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm. Res. 29(11):2943–2971. https://doi.org/10.1007/s11095-012-0828-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 4(4):253–265. https://doi.org/10.1038/nr1317

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Ravelli RB, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, Knossow M (2004) Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428(6979):198–202. https://doi.org/10.1038/nature02393

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Mukhtar E, Adhami VM, Mukhtar H (2014) Targeting microtubules by natural agents for cancer therapy. Mol. Cancer Ther. 13(2):275–284. https://doi.org/10.1158/1535-7163.mct-13-0791

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Prota AE, Bargsten K, Zurwerra D, Field JJ, Diaz JF, Altmann KH, Steinmetz MO (2013) Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science 339(6119):587–590. https://doi.org/10.1126/science.1230582

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Field JJ, Diaz JF, Miller JH (2013) The binding sites of microtubule-stabilizing agents. Chem. Biol. 20(3):301–315. https://doi.org/10.1016/j.chembiol.2013.01.014

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Blagosklonny MV, Fojo T (1999) Molecular effects of paclitaxel: myths and reality (a critical review). Int J Cancer 83(2):151–156. https://doi.org/10.1002/(sici)1097-0215(19991008)83:23.0.co;2-5

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Lowe J, Li H, Downing KH, Nogales E (2001) Refined structure of αβ-tubulin at 3.5 Å resolution. J. Mol. Biol. 313(5):1045–1057. https://doi.org/10.1006/jmbi.2001.5077

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Mitra A, Sept D (2008) Taxol allosterically alters the dynamics of the tubulin dimer and increases the flexibility of microtubules. Biophys. J. 95(7):3252–3258. https://doi.org/10.1529/biophysj.108.133884

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Natarajan K, Senapati S (2012) Understanding the basis of drug resistance of the mutants of αβ-tubulin dimer via molecular dynamics simulations. PLoS One 7(8):e42351. https://doi.org/10.1371/journal.pone.0042351

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Alushin GM, Lander GC, Kellogg EH, Zhang R, Baker D, Nogales E (2014) High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis. Cell 157(5):1117–1129. https://doi.org/10.1016/j.cell.2014.03.053

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Kellogg EH, Hejab NMA, Howes S, Northcote P, Miller JH, Diaz JF, Downing KH, Nogales E (2017) Insights into the distinct mechanisms of action of taxane and non-taxane microtubule stabilizers from cryo-EM structures. J. Mol. Biol. 429(5):633–646. https://doi.org/10.1016/j.jmb.2017.01.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Cao YN, Zheng LL, Wang D, Liang XX, Gao F, Zhou XL (2018) Recent advances in microtubule-stabilizing agents. Eur. J. Med. Chem. 143:806–828. https://doi.org/10.1016/j.ejmech.2017.11.062

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Sun C, Zhu L, Zhang C, Song C, Wang C, Zhang M, Xie Y, Schaefer HF (2018) Conformers, properties, and docking mechanism of the anticancer drug docetaxel: DFT and molecular dynamics studies. J. Comput. Chem. 39(15):889–900. https://doi.org/10.1002/jcc.25165

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Shah M, Dauffenbach L, Kerfoot CA, Cohen P, Culver KW, Sharma S, Wartmann M (2003) A comparative study of two novel, non-taxane microtubule stabilizing agents (XAA296A and EPO906A) utilizing the extreme drug resistance (EDR) assay in paclitaxel-sensitive or paclitaxel-resistant breast and ovarian cancers. Clin Cancer Res 9(16):6133s

    Google Scholar 

  26. 26.

    Sgadari C, Toschi E, Palladino C, Barillari G, Carlei D, Cereseto A, Ciccolella C, Yarchoan R, Monini P, Sturzl M, Ensoli B (2000) Mechanism of paclitaxel activity in Kaposi’s sarcoma. J. Immunol. 165(1):509–517. https://doi.org/10.4049/jimmunol.165.1.509

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Seoud MAF, Shamseddine A, Khalil AM, Charafeddine M, Geara FB (2006) Randomized trial comparing concurrent radiotherapy with cisplatin compared with paclitaxel in cervical cancer. Obstet Gynecol 107(4):43S. https://doi.org/10.1097/00006250-200604001-00101

    Article  Google Scholar 

  28. 28.

    Von Hoff DD, Goldstein D, Renschler MF (2014) Albumin-bound paclitaxel plus gemcitabine in pancreatic cancer REPLY. N. Engl. J. Med. 370(5):479–480

    Google Scholar 

  29. 29.

    McGrogan BT, Gilmartin B, Carney DN, McCann A (2008) Taxanes, microtubules and chemoresistant breast cancer. Biochim. Biophys. Acta 1785(2):96–132. https://doi.org/10.1016/j.bbcan.2007.10.004

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Joensuu H, Bono P, Kataja V, Alanko T, Kokko R, Asola R, Utriainen T, Turpeenniemi-Hujanen T, Jyrkkio S, Moykkynen K, Helle L, Ingalsuo S, Pajunen M, Huusko M, Salminen T, Auvinen P, Leinonen H, Leinonen M, Isola J, Kellokumpu-Lehtinen PL (2009) Fluorouracil, epirubicin, and cyclophosphamide with either docetaxel or vinorelbine, with or without trastuzumab, as adjuvant treatments of breast cancer: final results of the FinHer trial. J. Clin. Oncol. 27(34):5685–5692. https://doi.org/10.1200/JCO.2008.21.4577

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Gernone A, Pagliarulo A, Calderoni G, Pagliarulo V (2011) Elderly patients with metastatic castrate-resistant prostate cancer (mCRPC): safety and efficacy of docetaxel retreatment. J Clin Oncol 29(7):161. https://doi.org/10.1200/jco.2011.29.7_suppl.161

    Article  Google Scholar 

  32. 32.

    Urano N, Fujiwara Y, Doki Y, Kim SJ, Miyoshi Y, Noguchi S, Miyata H, Takiguchi S, Yasuda T, Yano M, Monden M (2006) Clinical significance of class III β-tubulin expression and its predictive value for resistance to docetaxel-based chemotherapy in gastric cancer. Int. J. Oncol. 28(2):375–381

    CAS  PubMed  Google Scholar 

  33. 33.

    Galsky MD, Dritselis A, Kirkpatrick P, Oh WK (2010) Cabazitaxel. Nat. Rev. Drug Discov. 9(9):677–678. https://doi.org/10.1038/nrd3254

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Duran GE, Wang YC, Francisco EB, Rose JC, Martinez FJ, Coller J, Brassard D, Vrignaud P, Sikic BI (2015) Mechanisms of resistance to cabazitaxel. Mol. Cancer Ther. 14(1):193–201. https://doi.org/10.1158/1535-7163.MCT-14-0155

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Paller CJ, Antonarakis ES (2011) Cabazitaxel: a novel second-line treatment for metastatic castration-resistant prostate cancer. Drug Des Devel Ther 5:117–124. https://doi.org/10.2147/DDDT.S13029

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Pean E, Demolis P, Moreau A, Hemmings RJ, O'Connor D, Brown D, Shepard T, Abadie E, Pignatti F (2012) The European Medicines Agency Review of Cabazitaxel (Jevtana®) for the treatment of hormone-refractory metastatic prostate cancer: summary of the Scientific Assessment of the Committee for Medicinal Products for Human Use. Oncologist 17(4):543–549. https://doi.org/10.1634/theoncologist.2011-0364

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Luduena RF (1998) Multiple forms of tubulin: different gene products and covalent modifications. Int. Rev. Cytol. 178:207–275

    CAS  Article  Google Scholar 

  38. 38.

    Santoshi S, Naik PK (2014) Molecular insight of isotypes specific β-tubulin interaction of tubulin heterodimer with noscapinoids. J. Comput. Aided Mol. Des. 28(7):751–763. https://doi.org/10.1007/s10822-014-9756-9

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Derry WB, Wilson L, Khan IA, Luduena RF, Jordan MA (1997) Taxol differentially modulates the dynamics of microtubules assembled from unfractionated and purified β-tubulin isotypes. Biochemistry 36(12):3554–3562. https://doi.org/10.1021/bi962724m

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Yang CH, Yap EH, Xiao H, Fiser A, Horwitz SB (2016) 2-(m-Azidobenzoyl)taxol binds differentially to distinct β-tubulin isotypes. Proc. Natl. Acad. Sci. 113(40):11294–11299. https://doi.org/10.1073/pnas.1613286113

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Hari M, Yang H, Zeng C, Canizales M, Cabral F (2003) Expression of class IIIβ-tubulin reduces microtubule assembly and confers resistance to paclitaxel. Cell Motil. Cytoskeleton 56(1):45–56. https://doi.org/10.1002/cm.10132

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Seve P, Isaac S, Tredan O, Souquet PJ, Pacheco Y, Perol M, Lafanechere L, Penet A, Peiller EL, Dumontet C (2005) Expression of class III β-tubulin is predictive of patient outcome in patients with non-small cell lung cancer receiving vinorelbine-based chemotherapy. Clin. Cancer Res. 11(15):5481–5486. https://doi.org/10.1158/1078-0432.CCR-05-0285

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Ferrandina G, Martinelli E, Zannoni GF, Distefano M, Paglia A, Ferlini C, Scambia G (2007) Expression of class III β-tubulin in cervical cancer patients administered preoperative radiochemotherapy: correlation with response to treatment and clinical outcome. Gynecol. Oncol. 104(2):326–330. https://doi.org/10.1016/j.ygyno.2006.08.046

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Sève P, Dumontet C (2008) Is class III β-tubulin a predictive factor in patients receiving tubulin-binding agents? Lancet Oncol 9(2):168–175. https://doi.org/10.1016/s1470-2045(08)70029-9

    Article  PubMed  Google Scholar 

  45. 45.

    Katsetos CD, Herman MM, Mork SJ (2003) Class III β-tubulin in human development and cancer. Cell Motil. Cytoskeleton 55(2):77–96. https://doi.org/10.1002/cm.10116

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Ferrandina G, Zannoni GF, Martinelli E, Paglia A, Gallotta V, Mozzetti S, Scambia G, Ferlini C (2006) Class III β-tubulin overexpression is a marker of poor clinical outcome in advanced ovarian cancer patients. Clin. Cancer Res. 12(9):2774–2779. https://doi.org/10.1158/1078-0432.ccr-05-2715

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Magnani M, Ortuso F, Soro S, Alcaro S, Tramontano A, Botta M (2006) The βI/βIII-tubulin isoforms and their complexes with antimitotic agents. FEBS J. 273(14):3301–3310. https://doi.org/10.1111/j.1742-4658.2006.05340.x

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Akasaka K, Maesawa C, Shibazaki M, Maeda F, Takahashi K, Akasaka T, Masuda T (2009) Loss of class III β-tubulin induced by histone deacetylation is associated with chemosensitivity to paclitaxel in malignant melanoma cells. J. Investig. Dermatol. 129(6):1516–1526. https://doi.org/10.1038/jid.2008.406

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Smiyun G, Azarenko O, Miller H, Rifkind A, LaPointe NE, Wilson L, Jordan MA (2017) βIII-tubulin enhances efficacy of cabazitaxel as compared with docetaxel. Cancer Chemother. Pharmacol. 80(1):151–164. https://doi.org/10.1007/s00280-017-3345-2

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Yusuf RZ, Duan Z, Lamendola DE, Penson RT, Seiden MV (2003) Paclitaxel resistance: molecular mechanisms and pharmacologic manipulation. Curr. Cancer Drug Targets 3(1):1–19. https://doi.org/10.2174/1568009033333754

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Ferlini C, Raspaglio G, Cicchillitti L, Mozzetti S, Prislei S, Bartollino S, Scambia G (2007) Looking at drug resistance mechanisms for microtubule interacting drugs: does TUBB3 work? Curr. Cancer Drug Targets 7(8):704–712. https://doi.org/10.2174/156800907783220453

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Sissung TM, Baum CE, Deeken J, Price DK, Aragon-Ching J, Steinberg SM, Dahut W, Sparreboom A, Figg WD (2008) ABCB1 genetic variation influences the toxicity and clinical outcome of patients with androgen-independent prostate cancer treated with docetaxel. Clin. Cancer Res. 14(14):4543–4549. https://doi.org/10.1158/1078-0432.ccr-07-4230

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Kavallaris M (2010) Microtubules and resistance to tubulin-binding agents. Nat. Rev. Cancer 10(3):194–204. https://doi.org/10.1038/nrc2803

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Kulkarni SA, Feng SS (2011) Effects of surface modification on delivery efficiency of biodegradable nanoparticles across the blood-brain barrier. Nanomedicine 6(2):377–394. https://doi.org/10.2217/nnm.10.131

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Culine S (2018) Refining the use of cabazitaxel in metastatic castrate-resistant prostate cancer. Eur. J. Cancer 97:30–32. https://doi.org/10.1016/j.ejca.2018.04.002

    Article  PubMed  Google Scholar 

  56. 56.

    Zhang ML, Song C, Yao Z, Ji Q (2012) Theoretical studies of the structure and properties of anticancer drug taxol. Curr Org Chem 16(19):2321–2331. https://doi.org/10.2174/138527212803520281

    CAS  Article  Google Scholar 

  57. 57.

    Durrant JD, McCammon JA (2011) Molecular dynamics simulations and drug discovery. BMC Biol. 9:71. https://doi.org/10.1186/1741-7007-9-71

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Rev. B.01. Wallingford, CT

  59. 59.

    Cavasotto CN, Phatak SS (2009) Homology modeling in drug discovery: current trends and applications. Drug Discov. Today 14(13–14):676–683. https://doi.org/10.1016/j.drudis.2009.04.006

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    The UniProt C (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45(D1):D158–D169. https://doi.org/10.1093/nar/gkw1099

    CAS  Article  Google Scholar 

  61. 61.

    McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, Cowley AP, Lopez R (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res. 41:W597–W600. https://doi.org/10.1093/nar/gkt376

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30:S162–S173. https://doi.org/10.1002/elps.200900140

    Article  PubMed  Google Scholar 

  63. 63.

    Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics (Oxford, England) 27(3):343–350. https://doi.org/10.1093/bioinformatics/btq662

    CAS  Article  Google Scholar 

  64. 64.

    Bienert S, Waterhouse A, de Beer TA, Tauriello G, Studer G, Bordoli L, Schwede T (2017) The SWISS-MODEL repository-new features and functionality. Nucleic Acids Res. 45(D1):D313–D319. https://doi.org/10.1093/nar/gkw1132

    CAS  Article  Google Scholar 

  65. 65.

    Bertoni M, Kiefer F, Biasini M, Bordoli L, Schwede T (2017) Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci. Rep. 7(1):10480. https://doi.org/10.1038/s41598-017-09654-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46(W1):W296–W303. https://doi.org/10.1093/nar/gky427

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Gilson MK, Zhou HX (2007) Calculation of protein-ligand binding affinities. Annu. Rev. Biophys. 36:21–42. https://doi.org/10.1146/annurev.biophys.36.040306.132550

    CAS  Article  Google Scholar 

  68. 68.

    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30(16):2785–2791. https://doi.org/10.1002/jcc.21256

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J. Comput. Chem. 26(16):1701–1718. https://doi.org/10.1002/jcc.20291

    CAS  Article  Google Scholar 

  70. 70.

    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J. Comput. Chem. 25(9):1157–1174. https://doi.org/10.1002/jcc.20035

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Leontyev IV, Stuchebrukhov AA (2010) Electronic polarizability and the effective pair potentials of water. J. Chem. Theory Comput. 6(10):3153–3161. https://doi.org/10.1021/ct1002048

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Hess B (2008) P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4(1):116–122. https://doi.org/10.1021/ct700200b

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Mozzetti S, Ferlini C, Concolino P, Filippetti F, Raspaglio G, Prislei S, Gallo D, Martinelli E, Ranelletti FO, Ferrandina G, Scambia G (2005) Class III β-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients. Clin. Cancer Res. 11(1):298–305

    CAS  PubMed  Google Scholar 

  74. 74.

    Seve P, Mackey J, Isaac S, Tredan O, Souquet PJ, Perol M, Lai R, Voloch A, Dumontet C (2005) Class III β-tubulin expression in tumor cells predicts response and outcome in patients with non-small cell lung cancer receiving paclitaxel. Mol. Cancer Ther. 4(12):2001–2007. https://doi.org/10.1158/1535-7163.MCT-05-0244

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Gan PP, Pasquier E, Kavallaris M (2007) Class III β-tubulin mediates sensitivity to chemotherapeutic drugs in non-small cell lung cancer. Cancer Res. 67(19):9356–9363. https://doi.org/10.1158/0008-5472.CAN-07-0509

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Guo J, Wang X, Sun H, Liu H, Yao X (2012) The molecular basis of IGF-II/IGF2R recognition: a combined molecular dynamics simulation, free-energy calculation and computational alanine scanning study. J. Mol. Model. 18(4):1421–1430. https://doi.org/10.1007/s00894-011-1159-4

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Jing X, Xiaoqiang H, Yushan Z (2019) Using molecular dynamics simulations to evaluate active designs of cephradine hydrolase by molecular mechanics/Poisson – Boltzmann surface area and molecular mechanics/generalized born surface area methods. RSC Adv. 9:13868–13877. https://doi.org/10.1039/c9ra02406a

    CAS  Article  Google Scholar 

  78. 78.

    Kumari R, Kumar R, Open Source Drug Discovery C, Lynn A (2014) g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 54(7):1951–1962. https://doi.org/10.1021/ci500020m

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Stepanian SG, Reva ID, Radchenko ED, Adamowicz L (1998) Conformational behavior of α-alanine. Matrix-isolation infrared and theoretical DFT and ab initio study. J Phys Chem A 102(24):4623–4629. https://doi.org/10.1021/jp973479z

    CAS  Article  Google Scholar 

  80. 80.

    Yu D, Kang W, Hao F, Li Z (2017) Spectroscopic studies and structural elucidation of cabazitaxel. Chinese J Magn Reson 34(2):191–199

    CAS  Google Scholar 

  81. 81.

    Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294(5540):93–96. https://doi.org/10.1126/science.1065659

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Bowie JU, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253(5016):164–170

    CAS  Article  Google Scholar 

  83. 83.

    Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356(6364):83–85. https://doi.org/10.1038/356083a0

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Kumbhar BV, Borogaon A, Panda D, Kunwar A (2016) Exploring the origin of differential binding affinities of human tubulin isotypes αβII, αβIII and αβIV for DAMA-colchicine using homology modelling, molecular docking and molecular dynamics simulations. PLoS One 11(5):e0156048. https://doi.org/10.1371/journal.pone.0156048

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grants No. 10904111, 11604238, and 21772146), the Tianjin Natural Science Foundation (11JCYBJC14500), the Science & Technology Development Fund of Tianjin Education Commission for Higher Education (2019KJ175), and the China Postdoctoral Science Foundation (20100470792). We appreciate the supply of the computing resources by USTC. The research at the University of Georgia was supported by the National Science Foundation (Grant CHE-1661604). The visit of MZ to the Center for Computational Quantum Chemistry, the University of Georgia was very helpful.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Meiling Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 11727 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Zhang, C., Lü, X. et al. Binding modes of cabazitaxel with the different human β-tubulin isotypes: DFT and MD studies. J Mol Model 26, 162 (2020). https://doi.org/10.1007/s00894-020-04400-w

Download citation

Keywords

  • Cabazitaxel
  • β-Tubulin isotypes
  • Taxenes
  • DFT methods
  • MD simulations
  • Drug resistance