Molecular and dissociative adsorption of tetrachlorodibenzodioxin on M-doped graphenes (M = B, Al, N, P): pure DFT and DFT + VdW calculations

Abstract

Tetrachlorodibenzodioxin (TCDD) is one of the most famous dioxin families that is hazardous to humans and the environment. Designing cheap and novel catalysts for its detecting and removing is an essential need for the environment. In this work, DFT + VdW is used to investigate the potentiality of proposed catalysts in adsorbing and dissociating TCDD. P-type and N-type charge carrier effects on the adsorption process are modeled by doping of B/Al and N/P atoms in the graphene. Al-doped graphene, with − 1.27 eV adsorption energy, has the highest possibility to adsorb TCDD. P-type dopants have higher interactions with TCDD in comparing with N-type dopants. Introducing positive and negative charges on the studied complexes shows that in all complexes, the driving force of complexation is π-π stacking except for the Al-doped graphene. Dissociative adsorption studies show that unlike literature data, chlorine atoms on the surface of studied catalysts are not dissociated from TCDD, and instead, C–O bonds in TCDD are dissociated symmetrically and asymmetrically. Data show that Al-doped graphene is the best catalyst for symmetrical dissociation, and pure graphene is the best one for asymmetrical dissociation of TCDD.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Chang RR, Jarman WM, King CC, Esperanza CC, Stephens RD (1990) Bioaccumulation of PCDDs and PCDFs in food animals III: a rapid cleanup of biological materials using reverse phase adsorbent columns. Chemosphere 20(7):881–886. https://doi.org/10.1016/0045-6535(90)90196-Z

    CAS  Article  Google Scholar 

  2. 2.

    D. Mackay, WYS, K.C. Ma, Polynuclear aromatic hydrocarbons, (1992) Polynuclear aromatic hydrocarbons, polychlorinated dioxins and dibenzofurans

  3. 3.

    Allinson G, Ueoka M, Morita M (1994) Effect of dietary 1,3,6,8-tetrachlorodibenzo-p-dioxin on the Japanese freshwater fish Oryzias latipes (Medaka) and aquatic snail Indoplanorbis exustus (Indohiramakigai). Chemosphere 28(7):1369–1383. https://doi.org/10.1016/0045-6535(94)90079-5

    CAS  Article  Google Scholar 

  4. 4.

    Marple L, Wasierski T, Throop L (1992) In vitro penetration of 2,3,7,8-tetrachlorodibenzo-p-dioxin through intact human skin. Chemosphere 25(7):1077–1084. https://doi.org/10.1016/0045-6535(92)90110-D

    CAS  Article  Google Scholar 

  5. 5.

    Wang L, Kumar M, Deng Q, Wang X, Liu M, Gong Z, Zhang S, Ma X, Xu-Monette ZY, Xiao M, Yi Q, Young KH, Ramos KS, Li Y (2019) 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces peripheral blood abnormalities and plasma cell neoplasms resembling multiple myeloma in mice. Cancer Lett 440-441:135–144. https://doi.org/10.1016/j.canlet.2018.10.009

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Beatty PW, Vaughn WK, Neal RA (1978) Effect of alteration of rat hepatic mixed-function oxidase (MFO) activity on the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicol Appl Pharmacol 45(2):513–519. https://doi.org/10.1016/0041-008X(78)90113-8

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Liwo A (2018) Computational methods to study the structure and dynamics of biomolecules and biomolecular processes: from bioinformatics to molecular quantum mechanics. Springer International Publishing

  8. 8.

    Zhou Q, Su X, Yong Y, Ju W, Fu Z, Li X (2018) Adsorption of 2, 3, 7, 8-tetrachlorodibenzao-p-dioxin (TCDD) on graphane decorated with Ni and Cu: a DFT study. Vacuum 149:53–59. https://doi.org/10.1016/j.vacuum.2017.12.016

    CAS  Article  Google Scholar 

  9. 9.

    Atkinson JD, Hung PC, Zhang Z, Chang MB, Yan Z, Rood MJ (2015) Adsorption and destruction of PCDD/Fs using surface-functionalized activated carbons. Chemosphere 118:136–142. https://doi.org/10.1016/j.chemosphere.2014.07.055

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Wang R, Zhang D, Liu C (2017) DFT study of the adsorption of 2,3,7,8-tetrachlorodibenzo-p-dioxin on pristine and Ni-doped boron nitride nanotubes. Chemosphere 168:18–24. https://doi.org/10.1016/j.chemosphere.2016.10.050

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Zhao S, Ma X, Pang Q, Sun H, Wang G (2014) Dissociative adsorption of 2,3,7,8-TCDD on the surfaces of typical metal oxides: a first-principles density functional theory study. Phys Chem Chem Phys 16(12):5553–5562. https://doi.org/10.1039/C3CP55048F

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Fagan SB, Santos EJG, Souza Filho AG, Mendes Filho J, Fazzio A (2007) Ab initio study of 2,3,7,8-tetrachlorinated dibenzo-p-dioxin adsorption on single wall carbon nanotubes. Chem Phys Lett 437(1):79–82. https://doi.org/10.1016/j.cplett.2007.01.071

    CAS  Article  Google Scholar 

  13. 13.

    Zhou Q, Yong Y, Ju W, Su X, Li X, Wang C, Fu Z (2018) DFT study of the adsorption of 2, 3, 7, 8-tetrachlorodibenzofuran (TCDF) on vacancy-defected graphene doped with Mn and Fe. Curr Appl Phys 18(1):61–67. https://doi.org/10.1016/j.cap.2017.10.011

    Article  Google Scholar 

  14. 14.

    Zhan M-X, Yu M-F, Zhang G, Chen T, Li X-D, Buekens A (2018) Low temperature degradation of polychlorinated dibenzo-p-dioxins and dibenzofurans over a VOx-CeOx/TiO2 catalyst with addition of ozone. Waste Manag 76:555–565. https://doi.org/10.1016/j.wasman.2018.02.049

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    H-p Z, J-l H, Wang Y, P-p T, Y-p Z, Lin X-y, Liu C, Tang Y (2017) Adsorption behavior of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin on pristine and doped black phosphorene: a DFT study. Chemosphere 185:509–517. https://doi.org/10.1016/j.chemosphere.2017.06.120

    CAS  Article  Google Scholar 

  16. 16.

    Izakmehri Z, Ganji MD, Ardjmand M (2017) Adsorption of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) on pristine, defected and Al-doped carbon nanotube: a dispersion corrected DFT study. Vacuum 136:51–59. https://doi.org/10.1016/j.vacuum.2016.11.025

    CAS  Article  Google Scholar 

  17. 17.

    Wang Q, Ma W, Tong Q, Du G, Wang J, Zhang M, Jiang H, Yang H, Liu Y, Cheng M (2017) Graphene oxide foam supported titanium(IV): recoverable heterogeneous catalyst for efficient, selective oxidation of arylalkyl sulfides to sulfoxides under mild conditions. Sci Rep 7(1):7209. https://doi.org/10.1038/s41598-017-07590-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Son J, Lee S, Kim SJ, Park BC, Lee H-K, Kim S, Kim JH, Hong BH, Hong J (2016) Hydrogenated monolayer graphene with reversible and tunable wide band gap and its field-effect transistor. Nat Commun 7:13261. https://doi.org/10.1038/ncomms13261 https://www.nature.com/articles/ncomms13261#supplementary-information

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Rodriguez-Lopez PaK-K, Wilton J. M. and Dalvit, Diego A. R. and Woods, Lilia M. (2018) Nonlocal optical response in topological phase transitions in the graphene family. Phys Rev Materials 2 (American Physical Society):014003. doi:https://doi.org/10.1103/PhysRevMaterials.2.014003

  20. 20.

    Zeng G, Li W, Ci S, Jia J, Wen Z (2016) Highly dispersed NiO nanoparticles decorating graphene nanosheets for non-enzymatic glucose sensor and biofuel cell. Sci Rep 6:36454. https://doi.org/10.1038/srep36454 https://www.nature.com/articles/srep36454#supplementary-information

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Hesabi M, Behjatmanesh-Ardakani R (2018) Investigation of carboxylation of carbon nanotube in the adsorption of anti-cancer drug: a theoretical approach. Appl Surf Sci 427:112–125. https://doi.org/10.1016/j.apsusc.2017.08.044

    CAS  Article  Google Scholar 

  22. 22.

    Hesabi M, Behjatmanesh-Ardakani R (2017) Interaction between anti-cancer drug hydroxycarbamide and boron nitride nanotube: a long-range corrected DFT study. Computational and Theoretical Chemistry 1117:61–80. https://doi.org/10.1016/j.comptc.2017.07.018

    CAS  Article  Google Scholar 

  23. 23.

    Behjatmanesh-Ardakani R (2018) Periodic and non-periodic DFT modeling of CO reduction on the surface of Ni-doped graphene nanosheet. Molecular Catalysis 455:239–249. https://doi.org/10.1016/j.mcat.2018.06.008

    CAS  Article  Google Scholar 

  24. 24.

    Yavari F, Koratkar N (2012) Graphene-based chemical sensors. The Journal of Physical Chemistry Letters 3(13):1746–1753. https://doi.org/10.1021/jz300358t

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Damte JY, S-l L, Leggesse EG, Jiang JC (2018) Methanol decomposition reactions over a boron-doped graphene supported Ru–Pt catalyst. Phys Chem Chem Phys 20(14):9355–9363. https://doi.org/10.1039/C7CP07618E

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Wang Y, Shen Y, Zhu S (2017) N-doped graphene as a potential catalyst for the direct catalytic decomposition of NO. Catal Commun 94:29–32. https://doi.org/10.1016/j.catcom.2017.02.003

    CAS  Article  Google Scholar 

  27. 27.

    Suzuki A, Selvam P, Kusagaya T, Takami S, Kubo M, Imamura A, Miyamoto A (2005) Chemical reaction dynamics of PeCB and TCDD decomposition: a tight-binding quantum chemical molecular dynamics study with first-principles parameterization. Int J Quantum Chem 102(3):318–327. https://doi.org/10.1002/qua.20396

    CAS  Article  Google Scholar 

  28. 28.

    Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X, Reuter K, Scheffler M (2009) Ab initio molecular simulations with numeric atom-centered orbitals. Comput Phys Commun 180(11):2175–2196. https://doi.org/10.1016/j.cpc.2009.06.022

    CAS  Article  Google Scholar 

  29. 29.

    Havu V, Blum V, Havu P, Scheffler M (2009) Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions. J Comput Phys 228(22):8367–8379. https://doi.org/10.1016/j.jcp.2009.08.008

    CAS  Article  Google Scholar 

  30. 30.

    Yu VW-Z, Corsetti F, García A, Huhn WP, Jacquelin M, Jia W, Lange B, Lin L, Lu J, Mi W, Seifitokaldani A, Vázquez-Mayagoitia Á, Yang C, Yang H, Blum V (2018) ELSI: a unified software interface for Kohn–Sham electronic structure solvers. Comput Phys Commun 222:267–285. https://doi.org/10.1016/j.cpc.2017.09.007

    CAS  Article  Google Scholar 

  31. 31.

    Marek A, Blum V, Johanni R, Havu V, Lang B, Auckenthaler T, Heinecke A, Bungartz HJ, Lederer H (2014) The ELPA library: scalable parallel eigenvalue solutions for electronic structure theory and computational science. J Phys Condens Matter 26(21):213201. https://doi.org/10.1088/0953-8984/26/21/213201

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B 59(11):7413–7421. https://doi.org/10.1103/PhysRevB.59.7413

    Article  Google Scholar 

  33. 33.

    Hauschild A, Karki K, Cowie BCC, Rohlfing M, Tautz FS, Sokolowski M (2005) Molecular distortions and chemical bonding of a large $\ensuremath{\pi}$-conjugated molecule on a metal surface. Phys Rev Lett 94 (3):036106. doi:https://doi.org/10.1103/PhysRevLett.94.036106

  34. 34.

    Rurali R, Lorente N, Ordejón P (2005) Comment on ``molecular distortions and chemical bonding of a large $\ensuremath{\pi}$-conjugated molecule on a metal surface”. Phys Rev Lett 95 (20):209601. doi:https://doi.org/10.1103/PhysRevLett.95.209601

  35. 35.

    Tkatchenko A, Scheffler M (2009) Accurate molecular Van Der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 102(7):073005. https://doi.org/10.1103/PhysRevLett.102.073005

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  37. 37.

    Elvins OC, Nash AW (1926) The reduction of carbon monoxide. Nature 118:154

    CAS  Article  Google Scholar 

  38. 38.

    Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276. https://doi.org/10.1107/S0021889811038970

    CAS  Article  Google Scholar 

  39. 39.

    Neese F (2012) The ORCA program system. WIREs Computational Molecular Science 2(1):73–78. https://doi.org/10.1002/wcms.81

    CAS  Article  Google Scholar 

  40. 40.

    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305. https://doi.org/10.1039/B508541A

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Weigend F (2006) Accurate Coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys 8(9):1057–1065. https://doi.org/10.1039/B515623H

    CAS  Article  Google Scholar 

  42. 42.

    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592. https://doi.org/10.1002/jcc.22885

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Lu T, Chen F (2012) Quantitative analysis of molecular surface based on improved marching tetrahedra algorithm. J Mol Graph Model 38:314–323. https://doi.org/10.1016/j.jmgm.2012.07.004

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Ehrlich S, Moellmann J, Grimme S (2013) Dispersion-corrected density functional theory for aromatic interactions in complex systems. Acc Chem Res 46(4):916–926. https://doi.org/10.1021/ar3000844

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Montejo-Alvaro F, Oliva J, Herrera-Trejo M, Hdz-García HM, Mtz-Enriquez AI (2019) DFT study of small gas molecules adsorbed on undoped and N-, Si-, B-, and Al-doped graphene quantum dots. Theor Chem Accounts 138(3):37. https://doi.org/10.1007/s00214-019-2428-z

    CAS  Article  Google Scholar 

  46. 46.

    Goudarzi M, Parhizgar SS, Beheshtian J (2019) Electronic and optical properties of vacancy and B, N, O and F doped graphene: DFT study. Opto-Electronics Review 27(2):130–136. https://doi.org/10.1016/j.opelre.2019.05.002

    Article  Google Scholar 

  47. 47.

    Esrafili MD (2019) Electric field assisted activation of CO2 over P-doped graphene: a DFT study. J Mol Graph Model 90:192–198. https://doi.org/10.1016/j.jmgm.2019.05.008

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J, Li W-X, Fu Q, Ma X, Xue Q, Sun G, Bao X (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23(5):1188–1193. https://doi.org/10.1021/cm102666r

    CAS  Article  Google Scholar 

  49. 49.

    Mahdavian L (2018) DFT study to reduce TCDD by B12N12 nano-cage: a comparison of calculating spectroscopic properties with NMR and NBO. Polycycl Aromat Compd 38(5):445–456. https://doi.org/10.1080/10406638.2016.1238399

    CAS  Article  Google Scholar 

  50. 50.

    Mahdavian L (2018) Computational investigation of 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD) adsorption on boron nitride-nanotube (BNNT). Polycycl Aromat Compd:1–8. https://doi.org/10.1080/10406638.2018.1484777

  51. 51.

    Politzer P, Murray JS, Clark T (2015) Mathematical modeling and physical reality in noncovalent interactions. J Mol Model 21(3):52. https://doi.org/10.1007/s00894-015-2585-5

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Sinnokrot MO, Sherrill CD (2004) Substituent effects in π−π interactions: sandwich and T-shaped configurations. J Am Chem Soc 126(24):7690–7697. https://doi.org/10.1021/ja049434a

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Williams G, Kamat PV (2009) Graphene−semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25(24):13869–13873. https://doi.org/10.1021/la900905h

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Li X, Shen R, Ma S, Chen X, Xie J (2018) Graphene-based heterojunction photocatalysts. Appl Surf Sci 430:53–107. https://doi.org/10.1016/j.apsusc.2017.08.194

    CAS  Article  Google Scholar 

  55. 55.

    Xie C, Wang Y, Zhang Z-X, Wang D, Luo L-B (2018) Graphene/semiconductor hybrid heterostructures for optoelectronic device applications. Nano Today 19:41–83. https://doi.org/10.1016/j.nantod.2018.02.009

    CAS  Article  Google Scholar 

  56. 56.

    Kao CM, Wu MJ (2000) Enhanced TCDD degradation by Fenton’s reagent preoxidation. J Hazard Mater 74(3):197–211. https://doi.org/10.1016/S0304-3894(00)00161-8

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Payame Noor University. We would like to thank Payame Noor University to provide an opportunity for doing it. We would also like to thank Matthias Scheffler and Volker Blum for license of FHI-aims program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Behjatmanesh-Ardakani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Behjatmanesh-Ardakani, R., Heydari, A. Molecular and dissociative adsorption of tetrachlorodibenzodioxin on M-doped graphenes (M = B, Al, N, P): pure DFT and DFT + VdW calculations. J Mol Model 26, 164 (2020). https://doi.org/10.1007/s00894-020-04387-4

Download citation

Keywords

  • TCDD
  • Doped graphene
  • DFT
  • Catalyst