Skip to main content
Log in

The structural basis for membrane assembly of immunoreceptor signalling complexes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Immunoreceptors are TM complexes that consist of separate ligand-binding and signal-transducing modules. Mounting evidence suggests that interactions with the local environment may influence the architecture of these TM domains, which assemble via crucial sets of conserved ionisable residues, and also control the peripheral association of immunoreceptor tyrosine-based activation motifs (ITAMs) whose phosphorylation triggers cytoplasmic signalling cascades. We now report a molecular dynamics (MD) simulation study of the archetypal T cell receptor (TCR) and its cluster of differentiation 3 (CD3) signalling partners, along with the analogous DNAX-activation protein of 12 kDa (DAP12)/natural killer group 2C (NKG2C) complex. Based on > 15 μs of explicitly solvated, atomic-resolution sampling, we explore molecular aspects of immunoreceptor complex stability in different functionally relevant states. A novel alchemical approach is used to simulate the cytoplasmic CD3ε tail at different depths within lipid bilayer models, revealing that the conformation and cytoplasmic exposure of ITAMs are highly sensitive to local enrichment by different lipid species and to phosphorylation. Furthermore, simulations of the TCR and DAP12 TM domains in various states of oligomerisation suggest that, during the early stages of assembly, stable membrane insertion is facilitated by the interfacial lipid/solvent environment and/or partial ionisation of charged residues. Collectively, our results indicate that the architecture and mechanisms of signal transduction in immunoreceptor complexes are tightly regulated by interactions with the microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aivazian DA, Stern LJ (2000) Phosphorylation of T cell receptor zeta is regulated by a lipid dependent folding transition. Nat Struct Biol 7:1023–1026

    Article  CAS  Google Scholar 

  2. Berk H, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  Google Scholar 

  3. Bezbradica JS, Medzhitov R (2012) Role of ITAM signaling module in signal integration. Curr Opin Immunol 24:58–66

    Article  CAS  Google Scholar 

  4. Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl E (2010) Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J Chem Theory Comput 6:459–466

    Article  CAS  Google Scholar 

  5. Bond PJ, Faraldo-Gómez JD (2011) Molecular mechanism of selective recruitment of Syk kinases by the membrane antigen-receptor complex. J Biol Chem 286:25872–25881

    Article  CAS  Google Scholar 

  6. Bonifacino JS, Cosson P, Shah N, Klausner RD (1991) Role of potentially charged transmembrane residues in targeting proteins for retention and degradation within the endoplasmic reticulum. EMBO J 10:2783–2793

    Article  CAS  Google Scholar 

  7. Brazin KN et al (2018) The T cell antigen receptor α transmembrane domain coordinates triggering through regulation of bilayer immersion and CD3 subunit associations. Immunity. 49:829–841

    Article  CAS  Google Scholar 

  8. Brooks BR et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    Article  CAS  Google Scholar 

  9. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101

    Article  Google Scholar 

  10. Call ME, Pyrdol J, Wiedmann M, Wucherpfennig KW (2002) The organizing principle in the formation of the T cell receptor-CD3 complex. Cell 111:967–979

    Article  CAS  Google Scholar 

  11. Call ME, Wucherpfennig KW (2004) Molecular mechanisms for the assembly of the T cell receptor–CD3 complex. Mol Immunol 40:1295–1305

    Article  CAS  Google Scholar 

  12. Call ME, Wucherpfennig KW (2005) The T cell receptor: critical role of the membrane environment in receptor assembly and function. Annu Rev Immunol 23:101–125

    Article  CAS  Google Scholar 

  13. Call ME et al (2006) The structure of the zeta-zeta transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell 127:355–368

    Article  CAS  Google Scholar 

  14. Call ME, Wucherpfennig KW, Chou JJ (2010) The structural basis for intramembrane assembly of an activating immunoreceptor complex. Nat Immunol 11:1023–1029

    Article  CAS  Google Scholar 

  15. Chen VB et al (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21

    Article  CAS  Google Scholar 

  16. Cheng X, Im W (2012) NMR observable-based structure refinement of DAP12-NKG2C activating immunoreceptor complex in explicit membranes. Biophys J 102:L27–L29

    Article  CAS  Google Scholar 

  17. Deford-Watts LM et al (2009) The cytoplasmic tail of the T cell receptor CD3 epsilon subunit contains a phospholipid-binding motif that regulates T cell functions. J Immunol 183:1055–1064

    Article  CAS  Google Scholar 

  18. DeFord-Watts LM et al (2011) The CD3 ζ subunit contains a phosphoinositide-binding motif that is required for the stable accumulation of TCR-CD3 complex at the immunological synapse. J Immunol 186:6839–6847

    Article  CAS  Google Scholar 

  19. de Jong DH, Periole X, Marrink SJ (2012) Dimerization of amino acid side chains: lessons from the comparison of different force fields. J Chem Theory Comput 8:1003–1014

    Article  Google Scholar 

  20. Devaux PF (1991) Static and dynamic lipid asymmetry in cell membranes. Biochemistry 30:1163–1173

    Article  CAS  Google Scholar 

  21. Duchardt ED, Sigalov ABD, Aivazian DD, Stern LJPD, Schwalbe HPD (2007) Structure induction of the T-cell receptor ζ-chain upon lipid binding investigated by NMR spectroscopy. ChemBioChem 8:820–827

    Article  CAS  Google Scholar 

  22. Essmann U et al (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  23. Feng J, Garrity D, Call ME, Moffett H, Wucherpfennig KW (2005) Convergence on a distinctive assembly mechanism by unrelated families of activating immune receptors. Immunity 22:427–438

    Article  CAS  Google Scholar 

  24. Gagnon E, Schubert DA, Gordo S, Chu HH, Wucherpfennig KW (2012) Local changes in lipid environment of TCR microclusters regulate membrane binding by the CD3epsilon cytoplasmic domain. J Exp Med 209:2423–2439

    Article  CAS  Google Scholar 

  25. Garrity D, Call ME, Feng J, Wucherpfennig KW (2005) The activating NKG2D receptor assembles in the membrane with two signaling dimers into a hexameric structure. Proc Natl Acad Sci U S A 102:7641–7646

    Article  CAS  Google Scholar 

  26. Gil D, Schamel WW, Montoya M, Sánchez-Madrid F, Alarcón B (2002) Recruitment of Nck by CD3 epsilon reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109:901–912

    Article  CAS  Google Scholar 

  27. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  28. Hofmann K, Stoffel W (1993) TMbase—a database of membrane spanning proteins segments. Biol Chem 374:166

    Google Scholar 

  29. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  30. Jo S, Lim JB, Klauda JB, Im W (2009) CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys J 97:50–58

    Article  CAS  Google Scholar 

  31. Jones DT, Taylor WR, Thornton JM (1994) A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 33:3038–3049

    Article  CAS  Google Scholar 

  32. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  33. Jusoh SA, Helms V (2011) Helical integrity and microsolvation of transmembrane domains from Flaviviridae envelope glycoproteins. Biochim Biophys Acta 1808:1040–1049

    Article  CAS  Google Scholar 

  34. Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843

    Article  CAS  Google Scholar 

  35. Knoblich K et al (2015) Transmembrane complexes of DAP12 crystallized in lipid membranes provide insights into control of oligomerization in immunoreceptor assembly. Cell Rep 11:1184–1192

    Article  CAS  Google Scholar 

  36. Krshnan L, Park S, Im W, Call MJ, Call ME (2016) A conserved αβ transmembrane interface forms the core of a compact T-cell receptor-CD3 structure within the membrane. Proc Natl Acad Sci U S A 113:E6649–E6658

    Article  CAS  Google Scholar 

  37. Kurowski MA, Bujnicki JM (2003) GeneSilico protein structure prediction meta-server. Nucleic Acids Res 31:3305–3307

    Article  CAS  Google Scholar 

  38. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486

    Article  CAS  Google Scholar 

  39. Lee MS et al (2015) A mechanical switch couples T cell receptor triggering to the cytoplasmic juxtamembrane regions of CD3ζζ. Immunity 43:227–239

    Article  CAS  Google Scholar 

  40. Lopez CA, Sethi A, Goldstein B, Wilson BS, Gnanakaran S (2015) Membrane-mediated regulation of the intrinsically disordered CD3ϵ cytoplasmic tail of the TCR. Biophys J 108:2481–2491

    Article  CAS  Google Scholar 

  41. Love PE, Hayes SM (2010) ITAM-mediated signaling by the T-cell antigen receptor. Cold Spring Harb Perspect Biol 2:a002485

    Article  Google Scholar 

  42. MacCallum JL, Bennett WF, Tieleman DP (2007) Partitioning of amino acid side chains into lipid bilayers: results from computer simulations and comparison to experiment. J Gen Physiol 129:371–377

    Article  CAS  Google Scholar 

  43. Manolios N, Letourneur F, Bonifacino JS, Klausner RD (1991) Pairwise, cooperative and inhibitory interactions describe the assembly and probable structure of the T-cell antigen receptor. EMBO J 10:1643–1651

    Article  CAS  Google Scholar 

  44. Park S, Krshnan L, Call MJ, Call ME, Im W (2018) Structural conservation and effects of alterations in T cell receptor transmembrane interfaces. Biophys J 114:1030–1035

    Article  CAS  Google Scholar 

  45. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  46. Petruk AA et al (2013) The structure of the CD3 ζζ transmembrane dimer in POPC and raft-like lipid bilayer. Biochim Biophys Acta 1828:2637–2645

    Article  CAS  Google Scholar 

  47. Sali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  48. Senes A, Engel DE, DeGrado WF (2004) Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Curr Opin Struct Biol 14:465–479

    Article  CAS  Google Scholar 

  49. Sharma S, Juffer AH (2013) An atomistic model for assembly of transmembrane domain of T cell receptor complex. J Am Chem Soc 135:2188–2197

    Article  CAS  Google Scholar 

  50. Sharma S, Lensink MF, Juffer AH (2014) The structure of the CD3ζζ transmembrane dimer in lipid bilayers. Biochim Biophys Acta 1838:739–746

    Article  CAS  Google Scholar 

  51. Sigalov AB, Aivazian DA, Uversky VN, Stern LJ (2006) Lipid-binding activity of intrinsically unstructured cytoplasmic domains of multichain immune recognition receptor signaling subunits. Biochemistry 45:15731–15739

    Article  CAS  Google Scholar 

  52. Sigalov AB, Hendricks GM (2009) Membrane binding mode of intrinsically disordered cytoplasmic domains of T cell receptor signaling subunits depends on lipid composition. Biochem Biophys Res Commun 389:388–393

    Article  CAS  Google Scholar 

  53. Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Molec Biol 6:175–182

    CAS  Google Scholar 

  54. Sun H, Chu H, Fu T, Shen H, Li G (2013) Theoretical elucidation of the origin for assembly of the DAP12 dimer with only one NKG2C in the lipid membrane. J Phys Chem B 117:4789–4797

    Article  CAS  Google Scholar 

  55. Wei P, Zheng BK, Guo PR, Kawakami T, Luo SZ (2013) The association of polar residues in the DAP12 homodimer: TOXCAT and molecular dynamics simulation studies. Biophys J 104:1435–1444

    Article  CAS  Google Scholar 

  56. Wei P, Xu L, Li CD, Sun FD, Chen L, Tan T, Luo SZ (2014) Molecular dynamic simulation of the self-assembly of DAP12-NKG2C activating immunoreceptor complex. PLoS One 9:e105560

    Article  Google Scholar 

  57. Wolf MG, Hoefling M, Aponte-Santamaría C (2010) Grubmüller, H. & Groenhof, G. g _ membed: efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J Comput Chem 31:2169–2174

    Article  CAS  Google Scholar 

  58. Wu W et al (2015) Lipid in T-cell receptor transmembrane signaling. Prog Biophys Mol Biol 118:130–138

    Article  CAS  Google Scholar 

  59. Wucherpfennig KW, Gagnon E, Call MJ, Huseby ES, Call ME (2009) Structural biology of the T-cell receptor: insights into receptor assembly, ligand recognition, and initiation of signaling. Cold Spring Harb Perspect Biol 2:a005140

    Google Scholar 

  60. Yang W et al (2017) Dynamic regulation of CD28 conformation and signaling by charged lipids and ions. Nat Struct Mol Biol 24:1081–1092

    Article  CAS  Google Scholar 

  61. Xu C et al (2008) Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell 135:702–713

    Article  CAS  Google Scholar 

  62. Zhang H, Cordoba SP, Dushek O, van der Merwe PA (2011) Basic residues in the T-cell receptor zeta cytoplasmic domain mediate membrane association and modulate signaling. Proc Natl Acad Sci U S A 108:19323–19328

    Article  CAS  Google Scholar 

  63. Zidovetzki R, Rost B, Pecht I (1998) Role of transmembrane domains in the functions of B- and T-cell receptors. Immunol Lett 64:97–107

    Article  CAS  Google Scholar 

  64. Zimmermann K et al (2017) The cytosolic domain of T-cell receptor ζ associates with membranes in a dynamic equilibrium and deeply penetrates the bilayer. J Biol Chem 292:17746–17759

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge access to the Darwin supercomputer of the University of Cambridge, and the HECToR UK supercomputer service for computational resources awarded by CCP-BioSim. ND thanks Maite Ortiz-Suarez and Mark Williamson for assistance during simulation analysis.

Funding

This work received financial support from the Nehru Trust of the University of Cambridge and Rajiv Gandhi (UK) foundation. PJB and JKM acknowledge funding from the National Research Foundation (NRF2017NRF-CRP001-027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Bond.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to the Topical Collection Tim Clark 70th Birthday Festschrift

Electronic supplementary material

ESM 1

(DOCX 3083 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dube, N., Marzinek, J.K., Glen, R.C. et al. The structural basis for membrane assembly of immunoreceptor signalling complexes. J Mol Model 25, 277 (2019). https://doi.org/10.1007/s00894-019-4165-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4165-6

Keywords

Navigation