Skip to main content

Advertisement

Log in

Inhibitory mechanism of 17β-aminoestrogens in the formation of Aβ aggregates

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a complex neurodegenerative disorder associated with the aggregation of the amyloid-beta peptide (Aβ) into large oligomers and fibrils that damage healthy brain cells. The predominant peptide fragments in the plaques are mainly formed by the Aβ1–40 and Aβ1–42 peptides, albeit the eleven-residue Aβ25–35 segment is largely used in biological studies because it retains the neurotoxic properties of the longer Aβ peptides. Recent studies indicate that treatment with therapeutic steroid hormones reduces the progress of the disease in AD models. Particularly, treatment with 17β-aminoestrogens (AEs) has shown a significant alleviation of the AD development by inhibiting oxidative stress and neuronal death. Yet, the mechanism by which the AE molecules exhibit their beneficial effects remains speculative. To shed light into the molecular mechanism of inhibition of the AD development by AEs, we investigated the possibility of direct interaction with the Aβ25–35 peptide. First, we calculate various interacting electronic properties of three AE derivatives as follows: prolame, butolame, and pentolame by performing DFT calculations. To account for the polymorphic nature of the Aβ aggregates, we considered four different Aβ25–35 systems extracted from AD relevant fibril structures. From the calculation of different electron density properties, specific interacting loci were identified that guided the construction and optimization of various complexes. Interestingly, the results suggest a similar inhibitory mechanism based on the direct interaction between the AEs and the M35 residue that seems to be general and independent of the polymorphic properties of the Aβ aggregates. Our analysis of the complex formation provides a structural framework for understanding the AE therapeutic properties in the molecular inhibitory mechanism of Aβ aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alzheimer’s Association (2018) 2018 Alzheimer’s disease facts and figures. Alzheimers Dement 14(3):367–429. https://doi.org/10.1016/j.jalz.2018.02.001

    Article  Google Scholar 

  2. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356. https://doi.org/10.1126/science.1072994

    Article  CAS  PubMed  Google Scholar 

  3. Iqbal K, Flory M, Khatoon S, Soininen H, Pirttila T, Lehtovirta M, Alafuzoff I, Blennow K, Andreasen N, Vanmechelen E, Grundke-Iqbal I (2005) Subgroups of Alzheimer’s disease based on cerebrospinal fluid molecular markers. Ann Neurol 58(5):748–757. https://doi.org/10.1002/ana.20639

    Article  CAS  PubMed  Google Scholar 

  4. Butterfield DA, Castegna A, Lauderback CM, Drake J (2002) Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging 23(5):655–664. https://doi.org/10.1016/S0197-4580(01)00340-2

    Article  PubMed  Google Scholar 

  5. Gulyaeva NV, Stepanichev MY (2010) AB (25–35) as proxyholder for amyloidogenic peptides: in vivo evidence. Exp Neurol 222(1):6–9. https://doi.org/10.1016/j.expneurol.2009.12.019

    Article  CAS  PubMed  Google Scholar 

  6. Kubo T, Nishimura S, Kumagae Y, Kaneko I (2002) In vivo conversion of racemized beta-amyloid ([D-Ser 26]A beta 1–40) to truncated and toxic fragments ([D-Ser26] A beta 25–35/40) and fragment presence in the brains of Alzheimer’s patients. J Neurosci Res 70(3):474–483. https://doi.org/10.1002/jnr.10391

    Article  CAS  PubMed  Google Scholar 

  7. Diaz A, Mendieta L, Zenteno E, Guevara J, Limon ID (2011) The role of NOS in the impairment of spatial memory and damaged neurons in rats injected with amyloid beta 25-35 into the temporal cortex. Pharmacol Biochem Behav 98(1):67–75. https://doi.org/10.1016/j.pbb.2010.12.005

    Article  CAS  PubMed  Google Scholar 

  8. Diaz A, Limon D, Chávez R, Zenteno E, Guevara J (2012) Aβ25-35 injection into the temporal cortex induces chronic inflammation that contributes to neurodegeneration and spatial memory impairment in rats. J Alzheimers Dis 30(3):505–522. https://doi.org/10.3233/JAD-2012-111979

    Article  CAS  PubMed  Google Scholar 

  9. Maurice T, Lockhart BP, Privat A (1996) Amnesia induced in mice by centrally administered beta-amyloid peptides involves cholinergic dysfunction. Brain Res 706(2):181–193. https://doi.org/10.1016/0006-8993(95)01032-7

    Article  CAS  PubMed  Google Scholar 

  10. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214. https://doi.org/10.1038/nrd1330

    Article  CAS  PubMed  Google Scholar 

  11. Boyd-Kimball D, Abdul HM, Reed T, Sultana R, Butterfield DA (2004) Role of phenylalanine 20 in Alzheimer’s amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity. Chem Res Toxicol 17(12):1743–1749. https://doi.org/10.1021/tx049796w

    Article  CAS  PubMed  Google Scholar 

  12. Moreira PI, Nunomura A, Nakamura M, Takeda A, Shenk JC, Aliev G, Smith MA, Perry G (2008) Nucleic acid oxidation in Alzheimer disease. Free Radic Biol Med 44(8):1493–1505. https://doi.org/10.1016/j.freeradbiomed.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  13. Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease-a double-edged sword. Neuron 35(3):419–432. https://doi.org/10.1016/S0896-6273(02)00794-8

    Article  CAS  PubMed  Google Scholar 

  14. Sroka Z, Cisowski W (2003) Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem Toxicol 41(6):753–758. https://doi.org/10.1016/S0278-6915(02)00329-0

    Article  CAS  PubMed  Google Scholar 

  15. Lemini C, Chanchola E (2009) Effects of beta-aminoestrogens on the sexual behavior of female rats. Physiol Behav 96(4–5):662–666. https://doi.org/10.1016/j.physbeh.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  16. Gonzalez G, Alvarado-Vasquez N, Fernandez-G JM, Cruz-Robles D, del Valle L, Pinzon E, Torres I, Rodriguez E, Zapata E, Gomez-Vidales V, Montaño LF, de la Peña A (2010) The antithrombotic effect of the aminoestrogen prolame N-(3-hydroxy-1,3,5(10)-estratrien-17B-YL)-3-hydroxyproylamine) is linked to an increase in nitric oxide production by platelets and endothelial cells. Atherosclerosis 208(1):62–68. https://doi.org/10.1016/j.atherosclerosis.2009.06.017

  17. Janicki C, Schupf N (2010) Hormonal influences on cognition and risk for Alzheimer’s disease. Curr Neurol Neurosci Rep 10:359–366. https://doi.org/10.1007/s11910-010-0122-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Henderson VW (2010) Action of estrogens in the aging brain: dementia and cognitive aging. Biochim Biophys Acta, Gen Subj 1800(10):1077–1083. https://doi.org/10.1016/j.bbagen.2009.11.005

    Article  CAS  Google Scholar 

  19. Nilsen J, Chen S, Irwin RW (2006) Estrogen protects neuronal cells from amyloid beta-induced apoptosis via regulation of mitochondrial proteins and function. BMC Neurosci 7(1):74–87. https://doi.org/10.1186/1471-2202-7-74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liang K, Yang L, Yin C, Xiao Z, Zhang J, Liu Y, Huang J (2010) Estrogen stimulates degradation of b-amyloid peptide by up-regulating neprilysin. J Biol Chem 285(2):935–942. https://doi.org/10.1074/jbc.M109.051664

    Article  CAS  PubMed  Google Scholar 

  21. Wang DS, Dickson DW, Malter JS (2006) β-Amyloid degradation and Alzheimer’s disease. J Biomed Biotechnol 2006:1–12. https://doi.org/10.1155/JBB/2006/58406

    Article  CAS  Google Scholar 

  22. Bang OY, Hong HS, Kim DH (2004) Neuroprotective effect of genistein against beta amyloid-induced neurotoxicity. Neurobiol Dis 16(1):21–28. https://doi.org/10.1016/j.nbd.2003.12.017

    Article  CAS  PubMed  Google Scholar 

  23. Ruiz-Larrea MB, Martin C, Martinez R, Navarro R, Lacort M, Miller NJ (2000) Antioxidant activities of estrogens against aqueous and lipophilic radicals; differences between phenol and catechol estrogens. Chem Phys Lipids 105(2):179–188. https://doi.org/10.1016/S0009-3084(00)00120-1

    Article  CAS  PubMed  Google Scholar 

  24. Limón D, Díaz A, Hernandez M, Fernandez-G JM, Torres-Martínez AC, Pérez-Severiano F, Rendón-Huerta EP, Montaño LF, Guevara J (2012) Neuroprotective effect of the aminoestrogen prolame against impairment of learning and memory skills in rats injected with amyloid-β-25-35 into the hippocampus. Eur J Pharmacol 685(1–3):74–80. https://doi.org/10.1016/j.ejphar.2012.04.020

    Article  CAS  PubMed  Google Scholar 

  25. Kohn W, Sham LG (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  26. Becke AD (1993) Density-functional thermochemistry. III The role of exact exchange. J Chem Phys 98(7):5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  27. Petersson GA, Tensfeldt TG, Montgomery JA (1991) A complete basis set model chemistry. III. The complete basis set-quadratic configuration interaction family of methods. J Chem Phys 94(9):6091–6101. https://doi.org/10.1063/1.460448

  28. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3094. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  29. Scrocco E, Tomasi J (1973) The electrostatic molecular potential as a tool for the interpretation of molecular properties. In: New concepts II. Springer, Berlin, Heidelberg. pp. 95–170

  30. Cruz-González T, Cortez-Torres E, Perez-Severiano F, Espinosa B, Guevara J, Perez-Benitez A, Melendez FJ, Díaz A, Ramírez RE (2016) Antioxidative stress effect of epicatechin and catechin induced by Aβ25–35 in rats and use of the electrostatic potential and the Fukui function as a tool to elucidate specific sites of interaction. Neuropeptides 59:89–95. https://doi.org/10.1016/j.npep.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JrJE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P,. Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision B.01. Gaussian Inc., Wallingford CT

  32. Lemini C, Jaimez R, Toscano RA (2004) Confirmation of the C-17 stereochemistry of pentolame by single crystal X-ray analysis of its monohydrate. Rev Soc Quim Méx 48:256–259

    CAS  Google Scholar 

  33. Fernández-G JM, Rubio-Arroyo MF, Soriano-García M, Toscano RA, Pérez-César MC (1985) Synthesis and molecular structure of prolame, N-(3-hydroxy-1,3,5(10)-estratrien-17β-yl)-3-hydroxypropylamine; an amino-estrogen with prolonged anticoagulant and brief estrogenic effects. Steroids 45(2):151–157. https://doi.org/10.1016/0039-128X(85)90044-3

    Article  Google Scholar 

  34. Lemini C, Rubio-Póo C, Silva G, García-Mondragón J, Zavala E, Mendoza-Patiño N, Castro D, Cruz-Almanza R, Mandoki JJ (1993) Anticoagulant and estrogenic effects of two new 17β-aminoestrogens, butolame [17β-(4-hydroxy-1-butylamino)-1,3,5(10)-estratrien-3-ol] and pentolame [17β-(5-hydroxy-1-pentylamino)-1,3,5(10)-estratrien-3-ol]. Steroids 58(10):457–461. https://doi.org/10.1016/0039-128X(93)90002-5

    Article  CAS  PubMed  Google Scholar 

  35. Laury ML, Carlson MJ, Wilson AK (2012) Vibrational frequency scale factors for density functional theory and the polarization consistent basis sets. J Comput Chem 33(30):2380–2387. https://doi.org/10.1002/jcc.23073

    Article  CAS  PubMed  Google Scholar 

  36. Levine I (1999) AB initio and density-functional treatments of molecules. In: quantum chemistry, 5th edn. Prentice hall U.S.a. pp 493-496

  37. Peralta-Inga Z, Murray JS, Edward Grice M, Boyd S, O’Connor CJ, Politzer P (2001) Computational characterization of surfaces of model graphene systems. J Mol Struct 549(1–2):147–158. https://doi.org/10.1016/S0166-1280(01)00491-2

    Article  CAS  Google Scholar 

  38. Weiner PK, Langridge R, Blaney JM, Schaefer R, Kollman PA (1982) Electrostatic potential molecular surfaces. Proc Natl Acad Sci U S A 79(12):3754–3758. https://doi.org/10.1073/pnas.79.12.3754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chigo Anota E, Ramirez Gutierrez RE, Escobedo Morales A, Hernandez Cocoletzi G (2012) Influence of point defects on the electronic properties of boron nitride nanosheets. J Mol Model 18:2175–2184. https://doi.org/10.1007/s00894-011-1233-y

    Article  CAS  Google Scholar 

  40. Lovell MA, Xie C, Gabbita SP, Markesbery WR (2000) Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer’s disease brain. Free Radic Biol Med 28(3):418–427. https://doi.org/10.1016/S0891-5849(99)00258-0

    Article  CAS  PubMed  Google Scholar 

  41. Murray IV, Sindoni ME, Axelsen PH (2005) Promotion of oxidative lipid membrane damage by amyloid beta proteins. Biochemistry 44(33):12606–12613. https://doi.org/10.1021/bi050926p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors acknowledge computer resources and support by the Laboratorio Nacional de Supercómputo del Sureste de México (LNS), the CONACyT member of the network of national laboratories, to the project 100256733-VIEP 2019 (BUAP, Mexico), and the PRODEP Academic Group BUAP-CA-263 (SEP, Mexico). F.J.M. acknowledges the computer resources of the Laboratorio de Supercómputo y Visualización en Paralelo at the Universidad Autónoma Metropolitana-Iztapalapa (UAM-I, Mexico).

Funding

L.N. would like to thank the CONACyT (Mexico) for financial support (PhD fellowship CVU: 697889).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jose Manuel Perez-Aguilar or Francisco J. Melendez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to Topical Collection QUITEL 2018 (44th Congress of Theoretical Chemists of Latin Expression)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noriega, L., Díaz, A., Limón, D. et al. Inhibitory mechanism of 17β-aminoestrogens in the formation of Aβ aggregates. J Mol Model 25, 229 (2019). https://doi.org/10.1007/s00894-019-4128-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4128-y

Keywords

Navigation