Defective graphene domains in boron nitride sheets

Abstract

Novel two-dimensional materials have emerged as hybrid structures that combine graphene and hexagonal boron nitride (h-BN) domains. During their growth process, structural defects such as vacancies and change of atoms connectivity are unavoidable. In the present study, we use first-principle calculations to investigate the electronic structure of graphene domains endowed with a single carbon atom vacancy or Stone–Wales defects in h-BN sheets. The results show that both kinds of defects yield localized states within the bandgap. Alongside this change in the bandgap configuration, it occurs a splitting of the spin channels in such a way that electrons with up and down spins populate different energy levels above and below the Fermi level, respectively. Such a spin arrangement is associated to lattice magnetization. Stone–Wales defects solely point to the appearance of new intragap levels. These results demonstrated that vacancies could significantly affect the electronic properties of hybrid graphene/h-BN sheets.

A Boron-Nitride sheet doped with a vacancy endowed Carbon domain

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Li Q, Liu M, Zhang Y, Liu Z (2015) Small 12(1):32. https://doi.org/10.1002/smll.201501766

    PubMed  Article  Google Scholar 

  2. 2.

    Kan M, Li Y, Sun Q (2015) . Wiley Inter Reviews: Comp Mol Sci 6(1):65. https://doi.org/10.1002/wcms.1237

    Article  Google Scholar 

  3. 3.

    Novoselov KS, Falko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) . Nature 490:192. https://doi.org/10.1038/nature11458

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J (2004) . Science 303(5655):217. https://doi.org/10.1126/science.1091979

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Kan EJ, Wu X, Li Z, Zeng XC, Yang J, Hou JG (2008) . J Chem Phys 129(8):084712. https://doi.org/10.1063/1.2971187

    PubMed  Article  Google Scholar 

  6. 6.

    Chen L (2014) . Solid State Commun 191:59. https://doi.org/10.1016/j.ssc.2014.03.026

    CAS  Article  Google Scholar 

  7. 7.

    Liu Y, Wu X, Zhao Y, Zeng XC, Yang J (2011) . J Phys Chem C 115(19):9442. https://doi.org/10.1021/jp201350e

    CAS  Article  Google Scholar 

  8. 8.

    Li S, Ren Z, Zheng J, Zhou Y, Wan Y, Hao L (2013) . J Appl Phys 113(3):033703. https://doi.org/10.1063/1.4776208

    Article  Google Scholar 

  9. 9.

    Ouyang J, Long M, Zhang D, Zhang X, He J, Gao Y (2015) . Comput Condens Matter 4:40. https://doi.org/10.1016/j.cocom.2015.08.001

    Article  Google Scholar 

  10. 10.

    Jung J, Qiao Z, Niu Q, MacDonald AH (2012) . Nano Lett 12(6):2936. https://doi.org/10.1021/nl300610w

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Akman N, Ozdogan C (2018) . J Phys Chem Solids 115:187. https://doi.org/10.1016/j.jpcs.2017.12.025

    CAS  Article  Google Scholar 

  12. 12.

    Ansari N, Nazari F, Illas F (2014) . Phys Chem Chem Phys 16:21473. https://doi.org/10.1039/C4CP02552K

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Azevedo S, Kaschny JR, de Castilho CM, de Brito Mota F (2009) . Eur Phys J B 67(4):507. https://doi.org/10.1140/epjb/e2009-00043-5

    CAS  Article  Google Scholar 

  14. 14.

    Lopez-Bezanilla A, Roche S (2012) . Phys Rev B 86:165420. https://doi.org/10.1103/PhysRevB.86.165420

    Article  Google Scholar 

  15. 15.

    Bhowmick S, Singh AK, Yakobson BI (2011) . J Phys Chem C 115(20):9889. https://doi.org/10.1021/jp200671p

    CAS  Article  Google Scholar 

  16. 16.

    Ding N, Chen X, Wu CML (2016) . Sci Rep 6:31499. https://doi.org/10.1038/srep31499

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Fan X, Shen Z, Liu AQ, Kuo JL (2012) . Nanoscale 4:2157. https://doi.org/10.1039/C2NR11728B

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Liu RF, Cheng C (2007) . Phys Rev B 76:014405. https://doi.org/10.1103/PhysRevB.76.014405

    Article  Google Scholar 

  19. 19.

    Nascimento R, Martins JdR, Batista RJC, Chacham H (2015) . J Phys Chem C 119(9):5055. https://doi.org/10.1021/jp5101347

    CAS  Article  Google Scholar 

  20. 20.

    Ramasubramaniam A, Naveh D (2011) . Phys Rev B 84:075405. https://doi.org/10.1103/PhysRevB.84.075405

    Article  Google Scholar 

  21. 21.

    Si MS, Xue DS (2007) . Phys Rev B 75:193409. https://doi.org/10.1103/PhysRevB.75.193409

    Article  Google Scholar 

  22. 22.

    Berseneva N, Gulans A, Krasheninnikov AV, Nieminen RM (2013) . Phys Rev B 87:035404. https://doi.org/10.1103/PhysRevB.87.035404

    Article  Google Scholar 

  23. 23.

    Han GH, Rodríguez-Manzo JA, Lee CW, Kybert NJ, Lerner MB, Qi ZJ, Dattoli EN, Rappe AM, Drndic M, Johnson ATC (2013) . ACS Nano 7(11):10129. https://doi.org/10.1021/nn404331f

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Chen S, Chen Z, Siahrostami S, Higgins D, Nordlund D, Sokaras D, Kim TR, Liu Y, Yan X, Nilsson E, Sinclair R, Nørskov JK, Jaramillo TF, Bao Z (2018) . J Am Chem Soc 140(25):7851. https://doi.org/10.1021/jacs.8b02798

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang ZF, Storr K, Balicas L, Liu F, Ajayan PM (2010) . Nat Mater 9:430. https://doi.org/10.1038/nmat2711

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg KP, Babakhani A, Idrobo JC, Vajtai R, Lou J, Ajayan PM (2013) . Nat Nanotechnol 8:119. https://doi.org/10.1038/nnano.2012.256

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Yang W, Chen G, Shi Z, Liu CC, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y, Zhang G (2013) . Nat Mater 12:792. https://doi.org/10.1038/nmat3695

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Gao Y, Zhang Y, Chen P, Li Y, Liu M, Gao T, Ma D, Chen Y, Cheng Z, Qiu X, Duan W, Liu Z (2013) . Nano Lett 13(7):3439. https://doi.org/10.1021/nl4021123. PMID: 23758663

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Fan M, Wu J, Yuan J, Deng L, Zhong N, He L, Cui J, Wang Z, Behera SK, Zhang C, Lai J, Jawdat BI, Vajtai R, Deb P, Huang Y, Qian J, Yang J, Tour JM, Lou J, Chu CW, Sun D, Ajayan PM (2019) . Adv Mater 31(12):1805778. https://doi.org/10.1002/adma.201805778

    Article  Google Scholar 

  30. 30.

    Lee JH, Choi YK, Kim HJ, Scheicher RH, Cho JH (2013) . J Phys Chem C 117(26):13435. https://doi.org/10.1021/jp402403f

    CAS  Article  Google Scholar 

  31. 31.

    Ghosh S, Chakrabarti R (2016) . J Phys Chem C 120(39):22681. https://doi.org/10.1021/acs.jpcc.6b06943

    CAS  Article  Google Scholar 

  32. 32.

    Perdew JP, Burke K, Ernzerhof M (1996) . Phys Rev Lett 77:3865. https://doi.org/10.1103/PhysRevLett.77.3865. https://link.aps.org/doi/10.1103/PhysRevLett.77.3865

    CAS  Article  Google Scholar 

  33. 33.

    Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) . J Phys Condens Matter 14(11):2745. http://stacks.iop.org/0953-8984/14/i=11/a=302

    CAS  Article  Google Scholar 

  34. 34.

    Perdew JP, Burke K, Ernzerhof M (1998) . Phys Rev Lett 80:891. https://doi.org/10.1103/PhysRevLett.80.891. https://link.aps.org/doi/10.1103/PhysRevLett.80.891

    CAS  Article  Google Scholar 

  35. 35.

    Junquera J, Paz O, Sánchez-Portal D, Artacho E (2001) . Phys Rev B 64:235111. https://doi.org/10.1103/PhysRevB.64.235111. https://link.aps.org/doi/10.1103/PhysRevB.64.235111

    CAS  Article  Google Scholar 

  36. 36.

    Wang J, Ma F, Sun M (2017) . RSC Adv 7:16801. https://doi.org/10.1039/C7RA00260B

    CAS  Article  Google Scholar 

  37. 37.

    da Rocha Martins J, Chacham H (2011) . ACS Nano 5(1):385. https://doi.org/10.1021/nn101809j

    PubMed  Article  Google Scholar 

  38. 38.

    Mazzoni MSC, Nunes RW, Azevedo S, Chacham H (2006) . Phys Rev B 73:073108. https://doi.org/10.1103/PhysRevB.73.073108. https://link.aps.org/doi/10.1103/PhysRevB.73.073108

    CAS  Article  Google Scholar 

  39. 39.

    Terrones H, Lv R, Terrones M, Dresselhaus MS (2012) . Rep Prog Phys 75(6):062501. https://doi.org/10.1088/0034-4885/75/6/062501

    PubMed  Article  Google Scholar 

  40. 40.

    Wang SP, Guo JG, Zhou LJ (2013) . Physica E: Low-dimensional Systems and Nanostructures 48:29. https://doi.org/10.1016/j.physe.2012.11.002

    CAS  Article  Google Scholar 

  41. 41.

    Xiao J, Staniszewski J, Gillespie J (2010) . Mater Sci Eng A 527(3):715. https://doi.org/10.1016/j.msea.2009.10.052

    Article  Google Scholar 

  42. 42.

    Cassabois G, Valvin P, Gil B (2016) . Nat Photonics 10:262. https://doi.org/10.1038/nphoton.2015.277

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Brazilian Research Councils CNPq and CAPES. The authors also acknowledge the CENAPAD-SP for providing the computational facilities. L.A.R.J and G.M.S gratefully acknowledge the financial support from the Brazilian Research Council FAPDF grants 0193.001.511/2017 and 0193.001766/2017, respectively. L.A.R.J also wishes to thank the Brazilian Ministry of Planning, Budget and Management (Grant DIPLA 005/2016). L.A.R.J. and G.M.S. gratefully acknowledge, respectively, the financial support from CNPq grants 302236/2018-0 and 304637/2018-1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luiz Antonio Ribeiro Junior.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to Topical Collection VII Symposium on Electronic Structure and Molecular Dynamics – VII SeedMol

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

dos Santos, R.M., Santos, R.B., Neto, B.G.E. et al. Defective graphene domains in boron nitride sheets. J Mol Model 25, 230 (2019). https://doi.org/10.1007/s00894-019-4093-5

Download citation

Keywords

  • Graphene
  • Boron nitride
  • Domains
  • Defects
  • Heterostructures