Skip to main content
Log in

A first-principles investigation of the influence of polyanionic boron doping on the stability and electrochemical behavior of Na3V2(PO4)3

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Na3V2(PO4)3 (NVP) is one of the most promising candidates for use as cathodes in room-temperature sodium ion batteries owing to its high structural stability and rapid Na+ transportation kinetics. The cationic doping of foreign ions at Na or V sites in the NVP lattice has proven to be an effective approach for enhancing the electrochemical performance of NVP. In this work, we present a first-principles density functional theory investigation of the impact of polyanionic boron doping at P sites on the structural and electrochemical behavior of NVP. Our simulation results suggest that B doping considerably increases the structural stability of NVP while shrinking its lattice size to some extent. Since B donates far fewer electrons to connected O atoms, the surrounding V atoms become more positive, causing the operating voltage to increase with B content. However, the reduction in lattice size is not beneficial for the Na+ transportation kinetics. As demonstrated by a search for the transition state, a concerted ion-exchange mechanism is preferred for Na+ transportation, and increased B doping leads to a higher Na+ diffusion barrier. Improvements in electrochemical performance due to B doping see (Hu et al. Adv Sci 3(12):1600112, 2016) appear to originate mainly from the resulting increased electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2a–c
Fig. 3
Fig. 4a–e
Fig. 5

Similar content being viewed by others

References

  1. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23(8):947–958. https://doi.org/10.1002/adfm.201200691

  2. Li W-J, Han C, Wang W, Gebert F, Chou S-L, Liu H-K, Zhang X, Dou S-X (2017) Commercial prospects of existing cathode materials for sodium ion storage. Adv Energy Mater 7(24):1700274. https://doi.org/10.1002/aenm.201700274

  3. Kim SW, Seo DH, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2(7):710–721. https://doi.org/10.1002/aenm.201200026

  4. Wong LL, Chen H, Adams S (2017) Design of fast ion conducting cathode materials for grid-scale sodium-ion batteries. Phys Chem Chem Phys 19(11):7506–7523. https://doi.org/10.1039/C7CP00037E

  5. Bui KM, Dinh VA, Okada S, Ohno T (2016) Na-ion diffusion in a NASICON-type solid electrolyte: a density functional study. Phys Chem Chem Phys 18(39):27226–27231. https://doi.org/10.1039/C6CP05164B

  6. Saravanan K, Mason CW, Rudola A, Wong KH, Balaya P (2012) The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv Energy Mater 3(4):444–450. https://doi.org/10.1002/aenm.201200803

  7. Jian Z, Han W, Lu X, Yang H, Hu YS, Zhou J, Zhou Z, Li J, Chen W, Chen D, Chen L (2013) Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv Energy Mater 3(2):156–160. https://doi.org/10.1002/aenm.201200558

  8. Noguchi Y, Kobayashi E, Plashnitsa LS, Okada S, Yamaki J-i (2013) Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds. Electrochim Acta 101:59–65. https://doi.org/10.1016/j.electacta.2012.11.038

  9. Chen S, Wu C, Shen L, Zhu C, Huang Y, Xi K, Maier J, Yu Y (2017) Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv Mater 29(48):1700431. https://doi.org/10.1002/adma.201700431

  10. Fang Y, Zhang J, Xiao L, Ai X, Cao Y, Yang H (2017) Phosphate framework electrode materials for sodium ion batteries. Adv Sci 4(5):1600392. https://doi.org/10.1002/advs.201600392

  11. Duan W, Zhu Z, Li H, Hu Z, Zhang K, Cheng F, Chen J (2014) Na3V2(PO4)3@C core-shell nanocomposites for rechargeable sodium-ion batteries. J Mater Chem A 2(23):8668–8675. https://doi.org/10.1039/C4TA00106K

  12. Song W, Ji X, Pan C, Zhu Y, Chen Q, Banks CE (2013) A Na3V2(PO4)3 cathode material for use in hybrid lithium ion batteries. Phys Chem Chem Phys 15(34):14357–14363. https://doi.org/10.1039/C3CP52308J

  13. Fang Y, Xiao L, Ai X, Cao Y, Yang H (2015) Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv Mater 27(39):5895–5900. https://doi.org/10.1002/adma.201502018

  14. Guo J-Z, Wu X-L, Wan F, Wang J, Zhang X-H, Wang R-S (2015) A superior Na3V2(PO4)3-based nanocomposite enhanced by both N-doped coating carbon and graphene as the cathode for sodium-ion batteries. Chem Eur J 21(48):17371–17378. https://doi.org/10.1002/chem.201502583

  15. Rui X, Sun W, Wu C, Yu Y, Yan Q (2015) An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network. Adv Mater 27(42):6670–6676. https://doi.org/10.1002/adma.201502864

  16. Zhang W, Liu Y, Chen C, Li Z, Huang Y, Hu X (2015) Flexible and binder-free electrodes of Sb/rGO and Na3V2(PO4)3/rGO nanocomposites for sodium-ion batteries. Small 11(31):3822–3829. https://doi.org/10.1002/smll.201500783

  17. Xu Y, Wei Q, Xu C, Li Q, An Q, Zhang P, Sheng J, Zhou L, Mai L (2016) Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv Energy Mater 6(14):1600389. https://doi.org/10.1002/aenm.201600389

  18. Li H, Yu X, Bai Y, Wu F, Wu C, Liu L-Y, Yang X-Q (2015) Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries. J Mater Chem A 3(18):9578–9586. https://doi.org/10.1039/C5TA00277J

  19. Lalere F, Seznec V, Courty M, David R, Chotard JN, Masquelier C (2015) Improving the energy density of Na3V2(PO4)3-based positive electrodes through V/Al substitution. J Mater Chem A 3(31):16198–16205. https://doi.org/10.1039/C5TA03528G

  20. Klee R, Lavela P, Aragón MJ, Alcántara R, Tirado JL (2016) Enhanced high-rate performance of manganese substituted Na3V2(PO4)3/C as cathode for sodium-ion batteries. J Power Sources 313:73–80. https://doi.org/10.1016/j.jpowsour.2016.02.066

  21. Aragón MJ, Lavela P, Ortiz GF, Tirado JL (2015) Benefits of chromium substitution in Na3V2(PO4)3 as a potential candidate for sodium-ion batteries. ChemElectroChem 2(7):995–1002. https://doi.org/10.1002/celc.201500052

  22. Aragón MJ, Lavela P, Ortiz GF, Tirado JL (2015) Effect of iron substitution in the electrochemical performance of Na3V2(PO4)3 as cathode for Na-ion batteries. J Electrochem Soc 162(2):A3077–A3083. https://doi.org/10.1149/2.0151502jes

  23. Lim S-J, Han D-W, Nam D-H, Hong K-S, Eom J-Y, Ryu W-H, Kwon H-S (2014) Structural enhancement of Na3V2(PO4)3/C composite cathode materials by pillar ion doping for high power and long cycle life sodium-ion batteries. J Mater Chem A 2(46):19623–19632. https://doi.org/10.1039/C4TA03948C

  24. Serras P, Palomares V, Alonso J, Sharma N, López del Amo JM, Kubiak P, Fdez-Gubieda ML, Rojo T (2013) Electrochemical Na extraction/insertion of Na3V2O2x(PO4)2F3–2x. Chem Mater 25(24):4917–4925. https://doi.org/10.1021/cm403679b

  25. Park Y-U, Seo D-H, Kim H, Kim J, Lee S, Kim B, Kang K (2014) A family of high-performance cathode materials for Na-ion batteries, Na3(VO1−xPO4)2F1+2x(0 ≤ x ≤ 1): combined first-principles and experimental study. Adv Funct Mater 24(29):4603–4614. https://doi.org/10.1002/adfm.201400561

  26. Shakoor RA, Seo D-H, Kim H, Park Y-U, Kim J, Kim S-W, Gwon H, Lee S, Kang K (2012) A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. J Mater Chem 22(38):20535–20541. https://doi.org/10.1039/C2JM33862A

  27. Park Y-U, Seo D-H, Kim B, Hong K-P, Kim H, Lee S, Shakoor RA, Miyasaka K, Tarascon J-M, Kang K (2012) Tailoring a fluorophosphate as a novel 4 V cathode for lithium-ion batteries. Sci Rep 2:704. https://doi.org/10.1038/srep00704

  28. Serras P, Palomares V, Goñi A, Gil de Muro I, Kubiak P, Lezama L, Rojo T (2012) High voltage cathode materials for Na-ion batteries of general formula Na3V2O2x(PO4)2F3-2x. J Mater Chem 22(41):22301–22308. https://doi.org/10.1039/C2JM35293A

  29. Park Y-U, Seo D-H, Kwon H-S, Kim B, Kim J, Kim H, Kim I, Yoo H-I, Kang K (2013) A new high-energy cathode for a Na-ion battery with ultrahigh stability. J Am Chem Soc 135(37):13870–13878. https://doi.org/10.1021/ja406016j

  30. Serras P, Palomares V, Goñi A, Kubiak P, Rojo T (2013) Electrochemical performance of mixed valence Na3V2O2x(PO4)2F3−2x/C as cathode for sodium-ion batteries. J Power Sources 241:56–60. https://doi.org/10.1016/j.jpowsour.2013.04.094

  31. Hu P, Wang X, Wang T, Chen L, Ma J, Kong Q, Shi S, Cui G (2016) Boron substituted Na3V2(P1−xBxO4)3 cathode materials with enhanced performance for sodium-ion batteries. Adv Sci 3(12):1600112. https://doi.org/10.1002/advs.201600112

  32. Lim SY, Kim H, Shakoor RA, Jung Y, Choi JW (2012) Electrochemical and thermal properties of NASICON structured Na3V2(PO4)3 as a sodium rechargeable battery cathode: a combined experimental and theoretical study. J Electrochem Soc 159(9):A1393–A1397. https://doi.org/10.1149/2.015209jes

  33. Wang Q, Zhang M, Zhou C, Chen Y (2018) Concerted ion-exchange mechanism for sodium diffusion and its promotion in Na3V2(PO4)3 framework. J Phys Chem C 122(29):16649–16654. https://doi.org/10.1021/acs.jpcc.8b06120

  34. Aydinol MK, Ceder G (1997) First-principles prediction of insertion potentials in Li-Mn oxides for secondary Li batteries. J Electrochem Soc 144(11):3832–3835. https://doi.org/10.1149/1.1838099

  35. Ji Z, Han B, Liang H, Zhou C, Gao Q, Xia K, Wu J (2016) On the mechanism of the improved operation voltage of rhombohedral nickel hexacyanoferrate as cathodes for sodium-ion batteries. ACS Appl Mater Interfaces 8(49):33619–33625. https://doi.org/10.1021/acsami.6b11070

  36. Mills G, Jónsson H, Schenter GK (1995) Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf Sci 324(2):305–337. https://doi.org/10.1016/0039-6028(94)00731-4

  37. Kresse G, Hafner J (1993) Ab initio molecular dynamics for open-shell transition metals. Phys Rev B 48(17):13115–13118. https://doi.org/10.1103/PhysRevB.48.13115

  38. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50. https://doi.org/10.1016/0927-0256(96)00008-0

  39. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

  40. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

  41. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775. https://doi.org/10.1103/PhysRevB.59.1758

  42. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

  43. Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36(3):354–360. https://doi.org/10.1016/j.commatsci.2005.04.010

  44. Edward S, KS D, Roger S, Graeme H (2007) Improved grid-based algorithm for Bader charge allocation. J Comput Chem 28(5):899–908. https://doi.org/10.1002/jcc.20575

  45. Ellis BL, Makahnouk WRM, Makimura Y, Toghill K, Nazar LF (2007) A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat Mater 6:749. https://doi.org/10.1038/nmat2007

  46. Song W, Cao X, Wu Z, Chen J, Huangfu K, Wang X, Huang Y, Ji X (2014) A study into the extracted ion number for NASICON structured Na3V2(PO4)3 in sodium-ion batteries. Phys Chem Chem Phys 16(33):17681–17687. https://doi.org/10.1039/C4CP01821D

  47. Song W, Ji X, Wu Z, Zhu Y, Yang Y, Chen J, Jing M, Li F, Banks CE (2014) First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3. J Mater Chem A 2(15):5358–5362. https://doi.org/10.1039/C4TA00230J

  48. Bui KM, Dinh VA, Okada S, Ohno T (2015) Hybrid functional study of the NASICON-type Na3V2(PO4)3: crystal and electronic structures, and polaron–Na vacancy complex diffusion. Phys Chem Chem Phys 17(45):30433–30439. https://doi.org/10.1039/C5CP05323Dz

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant 21773217) and Wuhan Science & Technology Project 2018010401011276. Support from the High-Performance Computing Platform, China University of Geosciences, is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenggang Zhou or Guobin Lv.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wang, Q., Zhang, M. et al. A first-principles investigation of the influence of polyanionic boron doping on the stability and electrochemical behavior of Na3V2(PO4)3. J Mol Model 25, 96 (2019). https://doi.org/10.1007/s00894-019-3971-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-3971-1

Keywords

Navigation