Skip to main content
Log in

A multiscale scheme for simulating polymer Tg

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

All-atomistic (AA) molecular dynamics (MD) is considered as one of the desirable methods for studying glass transition temperatures (Tg) of specific polymers. However, heavy computational efforts are generally required, and the simulated Tg values are not always in good agreement with the experimental data. In this work, a multiscale scheme is proposed: first, the structural and volumetric properties based multiscale modeling is employed to parameterize the coarse-grained (CG) potentials against the AA simulations of an oligomeric melt; with the CG potentials, MD simulations are then carried out on a serial of oligomer bulks and polymer systems of interests, for which the dynamical Tg values are determined. With poly(ethylene oxide) and poly(methyl methacrylate) as typical examples, the simulated dynamical Tg values of the oligomeric bulks exhibit a linear relation with the empirical values, which is used to determine the “actual Tg” for the polymer bulk. The so-obtained Tg is found to compare very well with the experimental data. Such a computational framework can be quite promising in investigating the effects of various complex factors on polymer Tg.

The actual Tg for a polymer can be reliably predicted by rescaling the simulated dynamical Tg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bicerano J (2002) Prediction of polymer properties, third edn. Dekker, New York

  2. van_Krevelen DW, Nijenhuis KT (2010) Properties of polymers their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier, Amsterdam

  3. Askadskii AA (2003) Computational materials science of polymers. Cambridge International Science, Cambridge

  4. Porter D (1995) Group interaction modelling of polymer properties. CRC, Boca Raton

  5. Han J, Gee RH, Boyd RH (1994) Glass transition temperatures of polymers from molecular dynamics simulations. Macromolecules 27:7781–7784

    Article  CAS  Google Scholar 

  6. Rigby D, Roe R-J (1987) Molecular dynamics simulation of polymer liquid and glass. I. Glass transition. J Chem Phys 87:7285–7292

    Article  CAS  Google Scholar 

  7. Godey FO, Fleury A, Ghoufi A, Soldera A (2018) The extent of the glass transition from molecular simulation revealing an overcrank effect. J Comput Chem 39:255–261

    Article  CAS  Google Scholar 

  8. Lyulin SV, Gurtovenko AA, Larin SV, Nazarychev VM, Lyulin AV (2013) Microsecond atomic-scale molecular dynamics simulations of polyimides. Macromolecules 46:6357–6363

    Article  CAS  Google Scholar 

  9. Khare KS, Frederick R, Phelan J (2018) Quantitative comparison of atomistic simulations with experiment for a cross-linked epoxy: a specific volume-cooling rate analysis. Macromolecules 51:564–575

    Article  CAS  Google Scholar 

  10. Tschop W, Kremer K, Batoulis J, Burger T, Hahn O (1998) Simulation of polymer melts. I. Coarse-graining procedure for polycarbonates. Acta Polym 49:61–74

    Article  Google Scholar 

  11. Muller-Plathe F (2002) Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. ChemPhysChem 3:754–769

    Article  CAS  Google Scholar 

  12. Karimi-Varzaneh HA, Muller-Plathe F (2012) Coarse-grained modeling for macromolecular chemistry. Top Curr Chem 307:295–322

    Article  CAS  Google Scholar 

  13. Brini E, Algaer EA, Ganguly P, Li C, RodriguezRopero F, van_der_Vegt NFA (2013) Systematic coarse-graining methods for soft matter simulations -a review. Soft Matter 9:2108–2119

    Article  CAS  Google Scholar 

  14. Carbone P, Avendano C (2014) Coarse-grained methods for polymeric materials: Enthalpyand entropy-driven models. WIREs Comput Mol Sci 4:62–70

    Article  CAS  Google Scholar 

  15. Ingolfsson H, Lopez CA, Uusitalo JJ, de_Jong DH, Gopal SM, Periole X, Marrink SJ (2014) The power of coarse graining in biomolecular simulations. WIREs Comput Mol Sci 4:225–248

    Article  CAS  Google Scholar 

  16. Carbone P, Varzaneh HAK, Chen X, Müller-Plathe F (2008) Transferability of coarse-grained force fields: the polymer case. J Chem Phys 128:064904

    Article  Google Scholar 

  17. Qian H-J, Carbone P, Chen X, Karimi-Varzaneh HA, Liew CC, Muller-Plathe F (2008) Temperature-transferable coarse-grained potentials for ethylbenzene, polystyrene, and their mixtures. Macromolecules 41:9919–9929

    Article  CAS  Google Scholar 

  18. Hsu DD, Xia W, Arturo SG, Keten S (2014) Systematic method for thermomechanically consistent coarsegraining: a universal model for methacrylate-based polymers. J Chem Theory Comput 10:2514–2527

    Article  CAS  Google Scholar 

  19. Yang S, Cui Z, Qu J (2014) A coarse-grained model for epoxy molding compound. J Phys Chem B 118:1660–1669

    Article  CAS  Google Scholar 

  20. Hsu DD, Xia W, Arturo SG, Keten S (2015) Thermomechanically consistent and temperature transferable coarse-graining of atactic polystyrene. Macromolecules 48:3057–3068

    Article  CAS  Google Scholar 

  21. Palczynski K, Wilke A, Paeschke M, Dzubiella J (2017) Molecular modeling of polycarbonate materials: glass transition and mechanical properties. Phys Rev Mat 1:043804

    Google Scholar 

  22. Xia W, Song J, Jeong C, Hsu DD, Frederick R, Phelan J, Douglas JF, Keten S (2017) Energy-renormalization for achieving temperature transferable coarse-graining of polymer dynamics. Macromolecules 50:8787–8796

    Article  CAS  Google Scholar 

  23. Wu C (2013) A combined scheme for systematically coarse-graining of stereoregular polymer blends. Macromolecules 46:5751–5761

    Article  CAS  Google Scholar 

  24. Wu C (2015) Coarse-grained molecular dynamics simulations of stereoregular poly(methyl methacrylate)/poly(vinyl chloride) blends. J Polym Sci B Polym Phys 53:203–212

    Article  CAS  Google Scholar 

  25. Wu C (2016) Phase morphologies of binary polymer blends predicted by systematically coarse-grained models. Macromol Theory Simul 25:336–347

    Article  CAS  Google Scholar 

  26. Wu C (2018) Multiscale modeling scheme for simulating polymeric melts: application to poly(ethylene oxide). Macromol Theory Simul 27:1700066

    Article  Google Scholar 

  27. Wu C (2017) Glass transition in single poly(ethylene oxide) chain: a molecular dynamics simulation study. J Polym Sci B Polym Phys 55:178–188

    Article  CAS  Google Scholar 

  28. Ruhle V, Junghans C, Lukyanov A, Kremer K, Andrienko D (2009) Versatile object-oriented toolkit for coarse-graining applications. J Chem Theory Comput 5:3211–3223

    Article  Google Scholar 

  29. van_der_Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) Gromacs: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  CAS  Google Scholar 

  30. Hess B, Kutzner C, van_der_Spoel D, Lindahl E (2008) Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  31. Hockney RW, Goel SP, Eastwood J (1974) Quiet high resolution computer models of a plasma. J Comput Phys 14:148–158

    Article  Google Scholar 

  32. Berendsen HJC, Postma JPM, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  33. Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, Oxford

  34. Bayramoglu B, Faller R (2012) Coarse-grained modeling of polystyrene in various environments by iterative boltzmann inversion. Macromolecules 45:9205–9219

    Article  CAS  Google Scholar 

  35. Glova AD, Falkovich SG, Dmitrienko DI, Lyulin AV, Larin SV, Nazarychev VM, Karttunen M, Lyulin SV (2018) Scale-dependent miscibility of polylactide and polyhydroxybutyrate: molecular dynamics simulations. Macromolecules 51:552–563

    Article  CAS  Google Scholar 

  36. Ellis B, Smith R (2009) Polymers: a property database. CRC, New York

  37. Wu C (2011) Simulated glass transition of poly(ethylene oxide) bulk and film: a comparative study. J Phys Chem B 115:11044–11052

    Article  CAS  Google Scholar 

  38. Wu C (2019) Bulk modulus of poly(ethylene oxide) simulated using the systematically coarse-grained model. Comput Mater Sci 156:89–95

  39. Wu C (2017) Re-examining the procedure for simulating polymer tg using molecular dynamics. J Mod Model 23:270

    Article  Google Scholar 

  40. Patrone PN, Dienstfrey A, Browning AR, Tucker S, Christensen S (2016) Uncertainty quantification in molecular dynamics studies of the glass transition temperature. Polymer 87:246–259

    Article  CAS  Google Scholar 

  41. Zhou Y, Milner ST (2017) Short-time dynamics reveals tg suppression in simulated polystyrene thin films. Macromolecules 50:5599–5610

    Article  CAS  Google Scholar 

  42. Marvin MD, Lang RJ, Simmons DS (2014) Nanoconfinement effects on the fragility of glass formation of a model freestanding polymer film. Soft Matter 10:3166–3170

    Article  CAS  Google Scholar 

  43. Hsu DD, Xia W, Song J, Keten S (2016) Glass-transition and side-chain dynamics in thin films: explaining dissimilar free surface effects for polystyrene vs poly(methyl methacrylate). ACS Macro Lett 5:481–486

    Article  CAS  Google Scholar 

  44. Wu R, Qiu X, Zhang T, Fu K, Yang X (2015) Atomistic molecular insight into the time dependence of polymer glass transition. J Phys Chem B 119:9959–9969

    Article  CAS  Google Scholar 

  45. Xia W, Hsu DD, Keten S (2015) Molecular weight effects on the glass transition and confinement behavior of polymer thin films. Macromol Rapid Commun 36:1422–1427

    Article  CAS  Google Scholar 

  46. Soldera A, Metatla N (2005) Study of the glass transition temperatures of stereoregular pmmas using different force fields. Internet Electron J Mol Des 4:721–736

    CAS  Google Scholar 

  47. Lyulin AV, Balabaev NK, Michels MAJ (2003) Molecular-weight and cooling-rate dependence of simulated tg for amorphous polystyrene. Macromolecules 36:8574–8575

    Article  CAS  Google Scholar 

  48. Niedzwiedz K, Wischnewski A, Pyckhout-Hintzen WJ, Allgaier DR, Faraone A (2008) Chain dynamics and viscoelastic properties of poly(ethylene oxide). Macromolecules 41:4866–4872

    Article  CAS  Google Scholar 

  49. Ellis B (2000) Polymers—a property database, edn. Chapman & Hall, Sheffield

    Google Scholar 

  50. Ute K, Miyatake N, Hatada K (1995) Glass transition temperature and melting temperature of uniform isotactic and syndiotactic poly(methyl methacrylate)s from 13mer to 50mer. Polymer 36:1415–1419

    Article  CAS  Google Scholar 

  51. Soldera A (1998) Comparison between the glass transition temperatures of the two pmma tacticities: a moleculardynamics simulation point ofview. Macromol Symp 133:21–32

    Article  CAS  Google Scholar 

  52. Wu C (2018) Multiscale modeling of glass transition in polymeric films: application to stereoregular poly(methyl methacrylate)s. Polymer 146:91–100

    Article  CAS  Google Scholar 

  53. Soldera A, Metatla N (2006) Glass transition of polymers: atomistic simulation versus experiments. Phys Rev E 74:061803

    Article  Google Scholar 

  54. Soldera A (2012) Atomistic simulations of vinyl polymers. Mol Simul 38:762–771

    Article  CAS  Google Scholar 

  55. Hess B, Leon S, van_der_Vegt N, Kremer K (2006) Long time atomistic polymer trajectories from coarse grained simulations: bisphenol-a polycarbonate. Soft Matter 2006:409–414

    Article  Google Scholar 

  56. Harmandaris VA, Kremer K (2009) Predicting polymer dynamics at multiple length and time scales. Soft Matter 5:3920–3926

    Article  CAS  Google Scholar 

  57. Harmandaris VA, Kremer K (2009) Dynamics of polystyrene melts through hierarchical multiscale simulations. Macromolecules 42:791–802

    Article  CAS  Google Scholar 

  58. Accary JB, Teboul V (2012) Time versus temperature rescaling for coarse grain molecular dynamics simulations. J Chem Phys 136:094502

    Article  CAS  Google Scholar 

  59. Morita H, Tanaka K, Kajiyama T, Nishi T, Doi M (2006) Study of the glass transition temperature of polymer surface by coarse-grained molecular dynamics simulation. Macromolecules 39:6233–6237

    Article  CAS  Google Scholar 

  60. Ediger MD, Forrest JA (2014) Dynamics near free surfaces and the glass transition in thin polymer films: a view to the future. Macromolecules 47:471–478

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Natural Science Foundation of Hunan Province (2017JJ2125), the Planned Science and Technology Project of Hunan Province (2016TP1028), the Innovative Research Team in Higher Educational Institute of Hunan Province, and the Talent Support Plan of Hunan University of Humanities Science & Technology (HUHST). The author is indebted to the Molecular Simulation Center of Hunan Province (situated at Hunan University), which provided the commercial software (Materials Studio-4.0) to build the initial structural models and to perform the empirical calculations, and the Laboratory for High Performance Computing (HPC) of the Key Discipline “Computer Applied Techniques” of Hunan Province (located at HUHST), which provided the generous CPU times for completing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaofu Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C. A multiscale scheme for simulating polymer Tg. J Mol Model 24, 335 (2018). https://doi.org/10.1007/s00894-018-3867-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3867-5

Keywords

Navigation