Skip to main content
Log in

Scavenging of hydroxyl, methoxy, and nitrogen dioxide free radicals by some methylated isoflavones

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Free radicals can be scavenged from biological systems by genistein, daidzein, and their methyl derivatives through hydrogen atom transfer (HAT), single-electron transfer (SET), and sequential proton-loss electron-transfer (SPLET) mechanisms. Reactions between these derivatives and the free radicals OH., OCH3., and NO2. via the HAT mechanism in the gas phase were studied using the transition state theory within the framework of DFT. Solvation of all the species and complexes involved in the HAT reactions in aqueous media was treated by performing single point energy calculations using the polarizable continuum model (PCM). The SET and SPLET mechanisms for the above reactions were also considered by applying the Marcus theory of electron transfer, and were found to be quite sensitive to geometry and solvation. Therefore, the geometries of all the species involved in the SET and SPLET mechanisms were fully optimized in aqueous media. The calculated barrier energies and rate constants of the HAT-based scavenging reactions showed that the OH group of the B ring in genistein, daidzein, and their methyl derivatives plays a major role in the scavenging of free radicals, and the role of this OH group in the HAT-based free-radical scavenging decreases in the following order: OH. > OCH3. > NO2.. The SPLET mechanism was found to be an important mechanism in these free-radical scavenging reactions, whereas the SET mechanism was not important in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–l
Fig. 3a–h
Fig. 4a–l
Fig. 5a–h
Fig. 6a–l
Fig. 7a–h

Similar content being viewed by others

References

  1. Fridovich I (1978) Science 201:875–880

  2. Halliwell B, Gutteridge JM (1984) Biochem J 219:1–14

  3. Darley-Usmar V, Halliwell B (1996) Pharm Res 13:649–662

  4. Yarkony DR, Schaefer HF, Rothenberg S (1974) J Am Chem Soc 96:656–659

  5. Niles JC, Wishnok JS, Tannenbaum SR (2006) Nitric Oxide 14:109–121

  6. Sodum RS, Fiala ES (2001) Chem Res Toxicol 14:438–450

  7. Pavlovic R, Santaniello E (2007) J Pharm Pharmacol 59:1687–1695

  8. Pogozelski WK, Tullius TD (1998) Chem Rev 98:1089–1108

  9. Sonntag V (2006) Free-radical-induced DNA damage and its repair: a chemical perspective. Springer, Berlin

  10. Greenberg MM (2007) Org Biomol Chem 5:18–30

  11. Cadet J, Delatour T, Douki T, Gasparutto D, Pouget JP, Ravanat JL, Sauvaigo S (1999) Mutat Res 424:9–21

  12. Burrows CJ, Muller JG (1998) Chem Rev 98:1109–1152

  13. Halliwell B (1999) Mutat Res 443:37–52

  14. Simons J (2006) Acc Chem Res 39:772–779

  15. Mishina Y, Duguid EM, He C (2006) Chem Rev 106:215–232

  16. Tiwari MK, Mishra PC (2013) J Mol Model 19:5445–5456

  17. Tiwari MK, Mishra PC (2016) J Chem Sci 128:1199–1210

  18. Tiwari MK, Mishra PC (2016) RSC Adv 6:86650–86662

  19. Tiwari MK, Jena NR, Mishra PC (2018) J Chem Sci 130:105–121

  20. Gulçin I (2012) Arch Toxicol 86:345–391

  21. Craft BD, Kerrihard AL, Amarowicz R, Pegg RB (2012) Compr Rev Food Sci Food Saf 11:148–173

  22. Setchell KD (1998) Am J Clin Nutr 68:1333S–1346S

  23. Ososki AL, Kennelly EJ (2003) Phytother Res 17:845–869

  24. Anderson JJB, Anthony M, Messina M, Garner SC (1999) Nutr Res Rev 12:75–116

  25. Adlercreutz H, Mazur W, Bartels P, Elomaa VV, Watanabe S, Wahala K, Landstrom M, Lundin E, Bergh A, Damber JE, Aman P, Widmark A, Johansson A, Zhang JX, Hallmans GJ (2000) J Nutr 130:658–659

  26. de Lemos ML (2001) Ann Pharmacother 35:1118–1121

  27. Hao A, Zhang Y, Zhang H, Liu Y, Xu X (2013) J Pharm Pharmacol 7:199

  28. Davis JN, Kucuk O, Sarkar FH (1999) Nutr Cancer 35:167–174

  29. Davis JN, Kucuk O, Djuric Z, Sarkar FH (2001) Free Radic Biol Med 30:1293–1302

  30. Kurzer MS, Xu X (1997) Annu Rev Nutr 17:353–381

  31. Yamashita Y, Kawada SZ, Nakaro H (1990) Biochem Pharmacol 39:737–744

  32. Okura A, Arakawa H, Oka H, Yoshinari T, Monnden Y (1988) Biochem Biophys Res Commun 157:183–189

  33. Setchell KDR, Cassidy A (1999) J Nutr 129:758S–767S

  34. Agnihotri N, Mishra PC (2011) J Phys Chem A 115:14221–14232

  35. Wright JS, Johnson ER, DiLabio GA (2001) J Am Chem Soc 123:1173–1183

  36. Lee SH, Baek K, Lee JE, Kim BG (2016) Biotechnol Bioeng 113:735–743

  37. Chiang CM, Wang DS, Chang TS (2016) Molecules 21:1723–1732

  38. Chiang CM, Ding HY, Tsai YT, Chang TS (2015) Int J Mol Sci 16:27816–27823

  39. Marcus RA (1964) Annu Rev Phys Chem 15:155–196

  40. Marcus RA (1993) Rev Mod Phys 65:599–610

  41. Marcus RA (1997) Pure Appl Chem 69:13–30

  42. Litwinienko G, Ingold KU (2003) J Org Chem 68:3433–3438

  43. Litwinienko G, Ingold KU (2004) J Org Chem 69:5888–5896

  44. Litwinienko G, Ingold KU (2005) J Org Chem 70:8982–8990

  45. Singh H, Singh S, Srivastava A, Tandon P, Bharti P, Kumar S, Maurya R (2014) Spectrochim Acta A 120:405–415

  46. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:5121–5129

  47. Zhao Y, Truhlar DG (2008) J Chem Theory Comput 4:1849–1868

  48. Hariharan PC, Pople JA (1972) Chem Phys Lett 16:217–219

  49. Miertus S, Tomasi J (1982) Chem Phys 65:239–245

  50. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129

  51. Nelsen SF, Blackstock SC, Kim Y (1987) J Am Chem Soc 109:677–682

  52. Nelsen SF, Weaver MN, Luo Y, Pladziewicz JR, Ausman LK, Jentzsch TL, O’Konek JJ (2006) J Phys Chem A 110:11665–11676

  53. Laidler KJ (2004) In: Chemical kinetics, 3rd edn. Pearson Education (Singapore) Pte Ltd. (Indian Branch), Patparganj

  54. Skodje RT, Truhlar DG (1981) J Phys Chem 34:624–628

  55. Frisch MJ, Trucks GW, Schlegel HB, et al (2009) Gaussian 09, revision D.01. Gaussian Inc., Wallingford

  56. Dennington R, Keith T, Millam J (2009) GaussView, version 5. Semichem Inc., Shawnee Mission

  57. Lengyel J, Rimarcik J, Vaganek A, Klein E (2013) Phys Chem Chem Phys 15:10895–10903

  58. Zhang HY, Wang LF, Sun YM (2003) Bioorg Med Chem Lett 13:909

  59. Zielonka J, Gebicki J, Grynkiewicz G (2003) Free Radic Biol Med 35:958

Download references

Acknowledgements

One of the authors (PCM) is thankful to the National Academy of Sciences, India (NASI) for the award of a Senior Scientist Fellowship along with the related financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phool Chand Mishra.

Additional information

This paper belongs to Topical Collection International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Electronic supplementary material

ESM 1

(DOCX 8999 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, M.K., Mishra, P.C. Scavenging of hydroxyl, methoxy, and nitrogen dioxide free radicals by some methylated isoflavones. J Mol Model 24, 287 (2018). https://doi.org/10.1007/s00894-018-3805-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3805-6

Keywords

Navigation