Skip to main content
Log in

A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In the present work we investigated the differential interactions of the antimicrobial peptides (AMPs) aurein 1.2 and maculatin 1.1 with a bilayer composed of a mixture of the lipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (POPG) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE). We carried out molecular dynamics (MD) simulations using a coarse-grained approach within the MARTINI force field. The POPE/POPG mixture was used as a simple model of a bacterial (prokaryotic cell) membrane. The results were compared with our previous findings for structures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), a representative lipid of mammalian cells. We started the simulations of the peptide–lipid system from two different initial conditions: peptides in water and peptides inside the hydrophobic core of the membrane, employing a pre-assembled lipid bilayer in both cases. Our results show similarities and differences regarding the molecular behavior of the peptides in POPE/POPG in comparison to their behavior in a POPC membrane. For instance, aurein 1.2 molecules can adopt similar pore-like structures on both POPG/POPE and POPC membranes, but the peptides are found deeper in the hydrophobic core in the former. Maculatin 1.1 molecules, in turn, achieve very similar structures in both kinds of bilayers: they have a strong tendency to form clusters and induce curvature. Therefore, the results of this study provide insight into the mechanisms of action of these two peptides in membrane leakage, which allows organisms to protect themselves against potentially harmful bacteria.

Aurein pore structure (green) in a lipid bilayer composed by POPE (blue) and POPG (red) mixture. It is possible to see water beads (light blue) inside the pore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–D1093. https://doi.org/10.1093/nar/gkv1278

    Article  CAS  PubMed  Google Scholar 

  2. Reddy KVR, Yedery RD, Aranha C (2004) Antimicrobial peptides: Premises and promises. Int J Antimicrob Agents 24:536–547

    Article  CAS  PubMed  Google Scholar 

  3. Martin E, Ganz T, Lehrer RI (1995) Defensins and other endogenous peptide antibiotics of vertebrates. J Leukoc Biol 58:128–136

    Article  CAS  PubMed  Google Scholar 

  4. Rozek T, Wegener KL, Bowie JH et al (2000) The antibiotic and anticancer active aurein peptides from the Australian bell frogs Litoria aurea and Litoria raniformis: the solution structure of aurein 1.2. Eur J Biochem 267:5330–5341. https://doi.org/10.1046/j.1432-1327.2000.01536.x

  5. Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta Biomembr 1778:357–375

    Article  CAS  Google Scholar 

  6. de la Fuente-Núñez C, Cardoso MH, de Souza CE et al (2016) Synthetic antibiofilm peptides. Biochim Biophys Acta Biomembr 1858:1061–1069. https://doi.org/10.1016/j.bbamem.2015.12.015

    Article  CAS  Google Scholar 

  7. Hilchie AL, Wuerth K, Hancock REW (2013) Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol 9:761–768. https://doi.org/10.1038/nchembio.1393

    Article  CAS  PubMed  Google Scholar 

  8. Mansour SC, Pena OM, Hancock REW (2014) Host defense peptides: Front-line immunomodulators. Trends Immunol 35:443–450

    Article  CAS  PubMed  Google Scholar 

  9. Guilhelmelli F, Vilela N, Albuquerque P et al (2013) Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol 4:353

  10. Dathe M, Wieprecht T (1999) Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta Biomembr 1462:71–87. https://doi.org/10.1016/S0005-2736(99)00201-1

    Article  CAS  Google Scholar 

  11. Huang Y, Huang J, Chen Y (2010) Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1:143–152. https://doi.org/10.1007/s13238-010-0004-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. REW H, Rozek A (2002) Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett 206:143–149

    Article  Google Scholar 

  13. Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55:4–30. https://doi.org/10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  15. Zelezetsky I, Tossi A (2006) Alpha-helical antimicrobial peptides—using a sequence template to guide structure–activity relationship studies. Biochim Biophys Acta Biomembr 1758:1436–1449

  16. Sato H, Feix JB (2006) Peptide–membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides. Biochim Biophys Acta Biomembr 1758:1245–1256. https://doi.org/10.1016/j.bbamem.2006.02.021

  17. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250. https://doi.org/10.1038/nrmicro1098

    Article  CAS  PubMed  Google Scholar 

  18. Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6:1543–1575. https://doi.org/10.3390/ph6121543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mihajlovic M, Lazaridis T (2010) Antimicrobial peptides in toroidal and cylindrical pores. Biochim Biophys Acta Biomembr 1798:1485–1493. https://doi.org/10.1016/j.bbamem.2010.04.004

    Article  CAS  Google Scholar 

  20. Dowhan W (1997) Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem 66:199–232. https://doi.org/10.1146/annurev.biochem.66.1.199

    Article  CAS  PubMed  Google Scholar 

  21. Goldfine H (1972) Comparative aspects of bacterial lipids. Adv Microb Physiol 8:1–58. https://doi.org/10.1016/S0065-2911(08)60187-3

    Article  CAS  PubMed  Google Scholar 

  22. Randle CL, Albro PW, Dittmer JC (1969) The phosphoglyceride composition of gram-negative bacteria and the changes in composition during growth. Biochim Biophys Acta Lipids Lipid Metab 187:214–220. https://doi.org/10.1016/0005-2760(69)90030-7

  23. Staudegger E, Prenner EJ, Kriechbaum M et al (2000) X-ray studies on the interaction of the antimicrobial peptide gramicidin S with microbial lipid extracts: evidence for cubic phase formation. Biochim Biophys Acta Biomembr 1468:213–230. https://doi.org/10.1016/S0005-2736(00)00260-1

    Article  CAS  Google Scholar 

  24. Von Deuster CIE, Knecht V (2011) Competing interactions for antimicrobial selectivity based on charge complementarity. Biochim Biophys Acta Biomembr 1808:2867–2876. https://doi.org/10.1016/j.bbamem.2011.08.005

    Article  CAS  Google Scholar 

  25. Chia BCS, Carver JA, Mulhern TD, Bowie JH (2000) Maculatin 1.1, an anti-microbial peptide from the Australian tree frog, Litoria genimaculata. Solution structure and biological activity. Eur J Biochem 267:1894–1908. https://doi.org/10.1046/j.1432-1327.2000.01089.x

  26. Balatti GE, Ambroggio EE, Fidelio GD et al (2017) Differential interaction of antimicrobial peptides with lipid structures studied by coarse-grained molecular dynamics simulations. Molecules 22:1775. https://doi.org/10.3390/molecules22101775

  27. Hopp TP, Woods KR (1981) Prediction of protein antigenic determinants from amino acid sequences. Immunology 78:3824–3828. https://doi.org/10.1073/pnas.78.6.3824

    Article  CAS  Google Scholar 

  28. Ambroggio EE, Separovic F, Bowie JH et al (2005) Direct visualization of membrane leakage induced by the antibiotic peptides: maculatin, citropin, and aurein. Biophys J 89:1874–1881. https://doi.org/10.1529/biophysj.105.066589

  29. Gehman JD, Luc F, Hall K et al (2008) Effect of antimicrobial peptides from Australian tree frogs on anionic phospholipid membranes. Biochemistry 47:8557–8565. https://doi.org/10.1021/bi800320v

  30. Marcotte I, Wegener KL, Lam YH et al (2003) Interaction of antimicrobial peptides from Australian amphibians with lipid membranes. Chem Phys Lipids 122:107–120. https://doi.org/10.1016/S0009-3084(02)00182-2

    Article  CAS  PubMed  Google Scholar 

  31. Bond PJ, Parton DL, Clark JF, Sansom MSP (2008) Coarse-grained simulations of the membrane-active antimicrobial peptide maculatin 1.1. Biophys J 95:3802–3815. https://doi.org/10.1529/biophysj.108.128686

  32. Matsuzaki K, Sugishita KI, Ishibe N et al (1998) Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry 37:11856–11863. https://doi.org/10.1021/bi980539y

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt NW, Wong GCL (2013) Antimicrobial peptides and induced membrane curvature: geometry, coordination chemistry, and molecular engineering. Curr Opin Solid State Mater Sci 17:151–163. https://doi.org/10.1016/j.cossms.2013.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. da Hora GCA, Archilha NL, Lopes JLS et al (2016) Membrane negative curvature induced by a hybrid peptide from pediocin PA-1 and plantaricin 149 as revealed by atomistic molecular dynamics simulations. Soft Matter 12:8884–8898. https://doi.org/10.1039/C6SM01714B

    Article  CAS  PubMed  Google Scholar 

  35. Shahmiri M, Enciso M, Mechler A (2015) Controls and constrains of the membrane disrupting action of Aurein 1.2. Sci Rep 5:16378. https://doi.org/10.1038/srep16378

  36. Lorenzón EN, Sanches PRS, Nogueira LG et al (2013) Dimerization of aurein 1.2: effects in structure, antimicrobial activity and aggregation of Candida albicans cells. Amino Acids 44:1521–1528. https://doi.org/10.1007/s00726-013-1475-3

  37. Lorenzón EN, Piccoli JP, Cilli EM (2014) Interaction between the antimicrobial peptide Aurein 1.2 dimer and mannans. Amino Acids 46:2627–2631. https://doi.org/10.1007/s00726-014-1832-x

    Article  CAS  PubMed  Google Scholar 

  38. Abraham MJ, Murtola T, Schulz R et al (2015) Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  39. Van Der Spoel D, Lindahl E, Hess B et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  CAS  Google Scholar 

  40. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317. https://doi.org/10.1007/s008940100045

    Article  CAS  Google Scholar 

  41. Pronk S, Páll S, Schulz R et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854. https://doi.org/10.1093/bioinformatics/btt055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447. https://doi.org/10.1021/ct700301q

  43. Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:750–760. https://doi.org/10.1021/jp036508g

  44. Marrink SJ, Risselada HJ, Yefimov S et al (2007) The MARTINI forcefield: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    Article  CAS  PubMed  Google Scholar 

  45. De Jong DH, Singh G, Bennett WFD et al (2013) Improved parameters for the MARTINI coarse-grained protein force field. J Chem Theory Comput 9:687–697. https://doi.org/10.1021/ct300646g

  46. Yesylevskyy SO, Schäfer LV, Sengupta D, Marrink SJ (2010) Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput Biol 6:1–17. https://doi.org/10.1371/journal.pcbi.1000810

    Article  CAS  Google Scholar 

  47. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

  48. Wang G, Li Y, Li X (2005) Correlation of three-dimensional structures with the antibacterial activity of a group of peptides designed based on a nontoxic bacterial membrane anchor. J Biol Chem 280:5803–5811. https://doi.org/10.1074/jbc.M410116200

    Article  CAS  PubMed  Google Scholar 

  49. Uggerhøj LE, Munk JK, Hansen PR et al (2014) Structural features of peptoid-peptide hybrids in lipid–water interfaces. FEBS Lett 588:3291–3297. https://doi.org/10.1016/j.febslet.2014.07.016

  50. Schrödinger, LLC (2015) The PyMol molecular graphics system, version 1.8. Schrödinger, LLC, New York

  51. Joosten RP, Te Beek TAH, Krieger E et al (2011) A series of PDB related databases for everyday needs. Nucleic Acids Res 39(Suppl 1):D411–D419. https://doi.org/10.1093/nar/gkq1105

  52. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637. https://doi.org/10.1002/bip.360221211

    Article  CAS  PubMed  Google Scholar 

  53. Lee J, Jung SW, Cho AE (2016) Molecular insights into the adsorption mechanism of human β-defensin-3 on bacterial membranes. Langmuir 32:1782–1790. https://doi.org/10.1021/acs.langmuir.5b04113

  54. Wassenaar TA, Ingólfsson HI, Böckmann RA et al (2015) Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J Chem Theory Comput 11:2144–2155. https://doi.org/10.1021/acs.jctc.5b00209

    Article  CAS  PubMed  Google Scholar 

  55. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101. https://doi.org/10.1063/1.2408420

    Article  CAS  PubMed  Google Scholar 

  56. Parrinello M (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182. https://doi.org/10.1063/1.328693

    Article  CAS  Google Scholar 

  57. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  58. Stambulchik E (2018) Grace homepage. http://plasma-gate.weizmann.ac.il/Grace/

  59. Marrink SJ, Tieleman DP (2013) Perspective on the MARTINI model. Chem Soc Rev 42:6801. https://doi.org/10.1039/c3cs60093a

  60. Bennett WFD, Tieleman DP (2011) Water defect and pore formation in atomistic and coarse-grained lipid membranes: pushing the limits of coarse graining. J Chem Theory Comput 7:2981–2988. https://doi.org/10.1021/ct200291v

    Article  CAS  PubMed  Google Scholar 

  61. Hugo AA, Tymczyszyn EE, Gómez-Zavaglia A, Pérez PF (2012) Effect of human defensins on lactobacilli and liposomes. J Appl Microbiol 113:1491–1497. https://doi.org/10.1111/j.1365-2672.2012.05433.x

Download references

Acknowledgements

This work was developed with financial support from Universidad de Buenos Aires (no. UBACYT 20020130200096BA), CONICET (nos. 0131-2014), and ANPCyT (nos. PICT-2014-3653, 2013-1205). M.F.M. and M.P. are career members of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pickholz.

Additional information

This paper belongs to Topical Collection XIX - Brazilian Symposium of Theoretical Chemistry (SBQT2017)

Electronic supplementary material

ESM 1

(PDF 3355 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balatti, G.E., Martini, M.F. & Pickholz, M. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures. J Mol Model 24, 208 (2018). https://doi.org/10.1007/s00894-018-3747-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3747-z

Keywords

Navigation