Advertisement

Are homoleptic complexes of ethylene with group 12 metals isolable in solution? A DFT study

  • Mauro Fianchini
  • Nuno A. G. Bandeira
Original Paper
  • 73 Downloads
Part of the following topical collections:
  1. 11th European Conference on Theoretical and Computational Chemistry (EuCO-TCC 2017)

Abstract

Ethylene efficiently binds late transition metals of groups 10 and 11. In spite of their reactivity, homoleptic compounds of formula [M-(η2-C2H4)3]n+ (with n = 0,1) have been isolated in solution and solid state and characterized spectroscopically throughout the last 50 years with metals from groups 10 and 11. X-ray diffraction studies proved that such homoleptic adducts adopt planar “wheel” structures where ethylene moieties lies flat in the same plane both in group 10 and 11. These experimental findings were also confirmed by several in-depth computational investigations carried out to understand the bond pattern of such peculiar structures. Homoleptic complexes of group 10 and 11 metals with ethylene are normally obtained in poorly coordinating solvents (like CH2Cl2 or light petroleum) saturated with ethylene to increase the stability of such species in solution. In the case of coinage metals, Cu(I), Ag(I) and Au(I), weakly coordinating fluorinated counter-ions (like SbF6) succeeded in stabilize the ethylene adducts, but, curiously, no analogous success has been reported for Zn(II), Cd(II), and Hg(II). Isoelectronic congeners along group 12 are still elusive, however, and, to our knowledge, full experimental and theoretical characterizations are still missing. This manuscript focuses on the theoretical study of the thermodynamic stability and properties of homoleptic complexes of ethylene with metals from group 12 in comparison with those from groups 10 and 11.

Keywords

Ethylene Homoleptic Group 12 DFT Stability Zinc Cadmium Mercury 

Notes

Acknowledgements

MF is grateful to ICIQ and FP7 Marie Curie COFUND 291787-ICIQ-IPMP fellowship. NAGB is grateful to grants SFRH/BPD/110419/2015 and PTDC/QEQ­QIN/3414/2014 from the Portuguese Science Foundation. MF and NAGB would like to thank the organizing committee of the 11th European Conference on Theoretical and Computational chemistry (EUCO-TCC) 2017.

Compliance with ethical standards

The authors declare that they have no conflicts of interest.

Supplementary material

894_2018_3683_MOESM1_ESM.docx (887 kb)
ESM 1 (DOCX 887 kb)

References

  1. 1.
    Zeise WC (1831) Von der Wirkung zwischen Platinchlorid und Alkohol, und von den dabei entstehenden neuen Substanzen. Ann der Physik 97(4):497–541.  https://doi.org/10.1002/andp.18310970402 CrossRefGoogle Scholar
  2. 2.
    Tolman CA (1974) Olefin complexes of nickel(0). III. Formation constants of (olefin)bis(tri-o-tolyl phosphite)nickel complexes. J Am Chem Soc 96(9):2780–2789.  https://doi.org/10.1021/ja00816a020 CrossRefGoogle Scholar
  3. 3.
    Pryadun RS, Gerlits OO, Atwood JD (2006) Structural studies on platinum alkene complexes and precursors. J Coord Chem 59(1):85–100.  https://doi.org/10.1080/00958970500368267 CrossRefGoogle Scholar
  4. 4.
    Tolman CA, Seidel WC (1974) Olefin complexes of nickel(0). II. Preparation and properties of (olefin)bis(tri-o-tolylphosphite)nickel complexes. J Am Chem Soc 96(9):2774–2780.  https://doi.org/10.1021/ja00816a019 CrossRefGoogle Scholar
  5. 5.
    Wang X-S, Zhao H, Li Y-H, Xiong R-G, You X-Z (2005) Olefin-copper(I) complexes and their properties. Top Catal 35(1):43–61.  https://doi.org/10.1007/s11244-005-3812-6 CrossRefGoogle Scholar
  6. 6.
    Stahl SS, Thorman JL, Nelson RC, Kozee MA (2001) Oxygenation of nitrogen-coordinated palladium(0): synthetic, structural, and mechanistic studies and implications for aerobic oxidation catalysis. J Am Chem Soc 123(29):7188–7189.  https://doi.org/10.1021/ja015683c CrossRefPubMedGoogle Scholar
  7. 7.
    Eisenstein O, Hoffmann R (1981) Transition-metal complexed olefins: how their reactivity toward a nucleophile relates to their electronic structure. J Am Chem Soc 103(15):4308–4320.  https://doi.org/10.1021/ja00405a005 CrossRefGoogle Scholar
  8. 8.
    Canovese L, Visentin F (2010) Synthesis, stability and reactivity of palladium(0) olefin complexes bearing labile or hemi-labile ancillary ligands and electron-poor olefins. Inorg Chim Acta 363(11):2375–2386.  https://doi.org/10.1016/j.ica.2010.04.017 CrossRefGoogle Scholar
  9. 9.
    Dias HVR, Wu J (2008) Structurally characterized coinage-metal–ethylene complexes. Eur J Inorg Chem 2008(4):509–522.  https://doi.org/10.1002/ejic.200701055 CrossRefGoogle Scholar
  10. 10.
    Chatt J, Duncanson LA (1953) 586. Olefin co-ordination compounds. Part III. Infra-red spectra and structure: attempted preparation of acetylene complexes. J Chem Soc 0:2939–2947.  https://doi.org/10.1039/jr9530002939 CrossRefGoogle Scholar
  11. 11.
    Mingos DMP (2001) A historical perspective on Dewar’s landmark contribution to organometallic chemistry. J Organomet Chem 635(1):1–8.  https://doi.org/10.1016/S0022-328X(01)01155-X CrossRefGoogle Scholar
  12. 12.
    Frenking G (2001) Understanding the nature of the bonding in transition metal complexes: from Dewar’s molecular orbital model to an energy partitioning analysis of the metal–ligand bond. J Organomet Chem 635(1):9–23.  https://doi.org/10.1016/S0022-328X(01)01154-8 CrossRefGoogle Scholar
  13. 13.
    Kubas GJ (2001) Metal–dihydrogen and σ-bond coordination: the consummate extension of the Dewar–Chatt–Duncanson model for metal–olefin π bonding. J Organomet Chem 635(1):37–68.  https://doi.org/10.1016/S0022-328X(01)01066-X CrossRefGoogle Scholar
  14. 14.
    Frenking G (2002) The Dewar–Chatt–Duncanson bonding model of transition metal-olefin complexes examined by modern quantum chemical methods. In: Leigh GJ, Winterton N (eds) Modern coordination chemistry: the legacy of Joseph Chatt. The Royal Society of Chemistry, pp 111–122.  https://doi.org/10.1039/9781847551481-00111
  15. 15.
    Crabtree RH (2001) The organometallic chemistry of the transition metals, 3rd ed. edn. Wiley, New YorkGoogle Scholar
  16. 16.
    Bistoni G, Belpassi L, Tarantelli F (2013) Disentanglement of donation and back-donation effects on experimental observables: a case study of gold–ethyne complexes. Angew Chem Int Ed 52(44):11599–11602.  https://doi.org/10.1002/anie.201305505 CrossRefGoogle Scholar
  17. 17.
    Elschenbroich C, Salzer A (1992) Organometallics: a concise introduction, 2nd ed. edn. VCH Publishers Inc., New YorkGoogle Scholar
  18. 18.
    Nyholm RS (1961) Proceedings of the Chemical Society. August 1961. Proc Chem Soc (August):273–320.  https://doi.org/10.1039/ps9610000273
  19. 19.
    Ziegler T, Rauk A (1979) A theoretical study of the ethylene-metal bond in complexes between copper(1+), silver(1+), gold(1+), platinum(0) or platinum(2+) and ethylene, based on the Hartree–Fock–Slater transition-state method. Inorg Chem 18(6):1558–1565.  https://doi.org/10.1021/ic50196a034 CrossRefGoogle Scholar
  20. 20.
    Schlappi DN, Cedeño DL (2009) Metal−olefin bond energies in M(CO)5(C2H4-nCln) M = Cr, Mo, W; n = 0−4: electron-withdrawing olefins do not increase the bond strength. J Phys Chem A 113(35):9692–9699.  https://doi.org/10.1021/jp9027468 CrossRefPubMedGoogle Scholar
  21. 21.
    Stoebenau EJ, Jordan RF (2004) Alkyne and alkene complexes of a d0 zirconocene aryl cation. J Am Chem Soc 126(36):11170–11171.  https://doi.org/10.1021/ja045794m CrossRefPubMedGoogle Scholar
  22. 22.
    Hasanayn F, El-Makkaoui MS (2009) DFT study of the transition states and products of methyl radical addition to olefins coordinated in an asymmetrical mode to [Cp2Zr(OtBu)]+: predictions of reversed regioselectivities compared to the noncoordinated reactions. Organometallics 28(22):6469–6479.  https://doi.org/10.1021/om900656t CrossRefGoogle Scholar
  23. 23.
    Bogdanović B, Kröner M, Wilke G (1966) Übergangsmetallkomplexe, I. Olefin-Komplexe des Nickels(0). Liebigs Ann Chem 699(1):1–23.  https://doi.org/10.1002/jlac.19666990102 CrossRefGoogle Scholar
  24. 24.
    Fischer K, Jonas K, Wilke G (1973) Tris(ethylene)nickel(0). Angew Chem Int Ed 12(7):565–566.  https://doi.org/10.1002/anie.197305651 CrossRefGoogle Scholar
  25. 25.
    Green M, Howard JAK, Spencer JL, Stone FGA (1977) Synthesis of ethylene, cyclo-octa-1,5-diene, bicyclo[2.2.1]heptene, and trans-cyclo-octene complexes of palladium(0) and platinum(0); crystal and molecular structure of tris(bicyclo[2.2.1]heptene)platinum. J Chem Soc Dalton Trans 3:271–277.  https://doi.org/10.1039/dt9770000271 CrossRefGoogle Scholar
  26. 26.
    Howard JAK, Spencer JL, Mason SA (1983) X-ray and neutron diffraction studies of the crystal and molecular structures of tris(ethylene)platinum and bis(ethylene)(tetrafluoroethylene)platinum. Proc R Soc Lond A 386(1790):145CrossRefGoogle Scholar
  27. 27.
    Dias HVR, Fianchini M, Cundari TR, Campana CF (2008) Synthesis and characterization of the gold(I) Tris(ethylene) complex [au(C2H4)3][SbF6]. Angew Chem Int Ed 47(3):556–559.  https://doi.org/10.1002/anie.200703515 CrossRefGoogle Scholar
  28. 28.
    Fianchini M, Campana CF, Chilukuri B, Cundari TR, Petricek V, Dias HVR (2013) Use of [SbF6] to isolate cationic copper and silver adducts with more than one ethylene on the metal center. Organometallics 32(10):3034–3041.  https://doi.org/10.1021/om4002439 CrossRefGoogle Scholar
  29. 29.
    Santiso-Quinones G, Reisinger A, Slattery J, Krossing I (2007) Homoleptic Cu-phosphorus and Cu-ethene complexes. Chem Commun 47:5046–5048.  https://doi.org/10.1039/b710899k CrossRefGoogle Scholar
  30. 30.
    Krossing I, Reisinger A (2003) A stable salt of the Tris(ethene)silver cation: structure and characterization of [ag(η2-C2H4)3]+[Al{OC(CF3)3}4]. Angew Chem Int Ed 42(48):5919–5919.  https://doi.org/10.1002/anie.200390635 CrossRefGoogle Scholar
  31. 31.
    Schaefer J, Himmel D, Krossing I (2013) [au(η2-C2H4)3]+[Al(ORF)4]– – a stable homoleptic (ethene)gold complex. Eur J Inorg Chem 2013(15):2712–2717.  https://doi.org/10.1002/ejic.201201538 CrossRefGoogle Scholar
  32. 32.
    Fianchini M, Cundari TR, DeYonker NJ, Dias HVR (2009) A non-classical copper carbonyl on a tri-alkene hydrocarbon support. Dalton Trans 12:2085–2087.  https://doi.org/10.1039/b902678a CrossRefGoogle Scholar
  33. 33.
    Lupinetti AJ, Strauss SH, Frenking G (2001) Nonclassical metal carbonyls. In: Prog Inorg Chem, John Wiley & Sons, Inc., pp 1–112.  https://doi.org/10.1002/9780470166512.ch1
  34. 34.
    Pörschke KR, Wilke G (1984) Über Carbonyl[(E,E,E)-1,5,9-cyclododecatrien]nickel und seine Reaktionen mit Nucleophilen. Chem Ber 117(1):56–68.  https://doi.org/10.1002/cber.19841170105 CrossRefGoogle Scholar
  35. 35.
    Guerrero A, Martin E, Hughes DL, Kaltsoyannis N, Bochmann M (2006) Zinc(II) η1- and η2-toluene complexes: structure and bonding in Zn(C6F5)2·(toluene) and Zn(C6F4-2-C6F5)2·(toluene). Organometallics 25(14):3311–3313.  https://doi.org/10.1021/om060429k CrossRefGoogle Scholar
  36. 36.
    Wehmschulte RJ, Wojtas L (2011) Cationic ethylzinc compound: a benzene complex with catalytic activity in hydroamination and hydrosilylation reactions. Inorg Chem 50(22):11300–11302.  https://doi.org/10.1021/ic201921d CrossRefPubMedGoogle Scholar
  37. 37.
    Petersen TO, Simone D, Krossing I (2016) From ion-like ethylzinc aluminates to [EtZn(arene)2]+[Al(ORF)4] salts. Chem Eur J 22(44):15847–15855.  https://doi.org/10.1002/chem.201601860 CrossRefPubMedGoogle Scholar
  38. 38.
    Wooten A, Carroll PJ, Maestri AG, Walsh PJ (2006) Unprecedented alkene complex of zinc(II): structures and bonding of divinylzinc complexes. J Am Chem Soc 128(14):4624–4631.  https://doi.org/10.1021/ja058700x CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    González MJ, González J, López LA, Vicente R (2015) Zinc-catalyzed alkene cyclopropanation through zinc vinyl carbenoids generated from cyclopropenes. Angew Chem Int Ed 54(41):12139–12143.  https://doi.org/10.1002/anie.201505954 CrossRefGoogle Scholar
  40. 40.
    Mukherjee A, Sen TK, Ghorai PK, Samuel PP, Schulzke C, Mandal SK (2012) Phenalenyl-based organozinc catalysts for intramolecular hydroamination reactions: a combined catalytic, kinetic, and mechanistic investigation of the catalytic cycle. Chem Eur J 18(34):10530–10545.  https://doi.org/10.1002/chem.201200868 CrossRefPubMedGoogle Scholar
  41. 41.
    Petersen TO, Tausch E, Schaefer J, Scherer H, Roesky PW, Krossing I (2015) Ethyl-zinc(II)-cation equivalents: synthesis and Hydroamination catalysis. Chem Eur J 21(39):13696–13702.  https://doi.org/10.1002/chem.201502328 CrossRefPubMedGoogle Scholar
  42. 42.
    Chilleck MA, Hartenstein L, Braun T, Roesky PW, Braun B (2015) Cationic zinc organyls as precatalysts for hydroamination reactions. Chem Eur J 21(6):2594–2602.  https://doi.org/10.1002/chem.201405662 CrossRefPubMedGoogle Scholar
  43. 43.
    Zulys A, Dochnahl M, Hollmann D, Löhnwitz K, Herrmann J-S, Roesky PW, Blechert S (2005) Intramolecular hydroamination of functionalized alkenes and alkynes with a homogenous zinc catalyst. Angew Chem Int Ed 44(47):7794–7798.  https://doi.org/10.1002/anie.200502006 CrossRefGoogle Scholar
  44. 44.
    Dochnahl M, Lohnwitz K, Pissarek J-W, Roesky PW, Blechert S (2008) Electronic modification of an aminotroponiminate zinc complex leading to an increased reactivity in the hydroamination of alkenes. Dalton Trans 21:2844–2848.  https://doi.org/10.1039/b719120k CrossRefGoogle Scholar
  45. 45.
    Pearson WH, Hutta DA, Fang W-K (2000) Azidomercurations of alkenes: mercury-promoted Schmidt reactions. J Org Chem 65(24):8326–8332.  https://doi.org/10.1021/jo001181q CrossRefPubMedGoogle Scholar
  46. 46.
    Brown HC, Kurek JT, Rei MH, Thompson KL (1985) Solvomercuration-demercuration. 12. The solvomercuration-demercuration of olefins in alcohol solvents with mercuric trifluoroacetate—an ether synthesis of wide generality. J Org Chem 50(8):1171–1174.  https://doi.org/10.1021/jo00208a005 CrossRefGoogle Scholar
  47. 47.
    De Jong S, Nosal DG, Wardrop DJ (2012) Methods for direct alkene diamination, new & old. Tetrahedron 68(22):4067–4105.  https://doi.org/10.1016/j.tet.2012.03.036 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Greene C, Grudzien PK, York JT (2017) Binding and electrophilic activation of ethylene by zinc(II), cadmium(II), and mercury(II) complexes: a theoretical investigation. J Organomet Chem 851(Supplement C):122–135.  https://doi.org/10.1016/j.jorganchem.2017.09.001 CrossRefGoogle Scholar
  49. 49.
    Mayo P, Orlova G, Goddard JD, Tam W (2001) Remote substituent effects on the oxymercuration of 2-substituted norbornenes: an experimental and theoretical study. J Org Chem 66(15):5182–5191.  https://doi.org/10.1021/jo010330h CrossRefPubMedGoogle Scholar
  50. 50.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 RD. Gaussian, Inc., WallingfordGoogle Scholar
  51. 51.
    Tian Z, Tang Z (2005) Experimental and theoretical studies of the interaction of silver cluster cations Agn+ (n = 1–4) with ethylene. Rapid Commun Mass Sp 19(20):2893–2904.  https://doi.org/10.1002/rcm.2139 CrossRefGoogle Scholar
  52. 52.
    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305.  https://doi.org/10.1039/b508541a CrossRefGoogle Scholar
  53. 53.
    Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990) Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor Chem Accounts 77(2):123–141.  https://doi.org/10.1007/bf01114537 CrossRefGoogle Scholar
  54. 54.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104.  https://doi.org/10.1063/1.3382344 CrossRefPubMedGoogle Scholar
  55. 55.
    Becke AD, Johnson ER (2005) A density-functional model of the dispersion interaction. J Chem Phys 123(15):154101.  https://doi.org/10.1063/1.2065267 CrossRefPubMedGoogle Scholar
  56. 56.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  57. 57.
    Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33(12):8822–8824CrossRefGoogle Scholar
  58. 58.
    Perdew JP (1986) Erratum: density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 34:7406CrossRefGoogle Scholar
  59. 59.
    Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comp Chem 32(7):1456–1465.  https://doi.org/10.1002/jcc.21759 CrossRefGoogle Scholar
  60. 60.
    Tomasi J, Mennucci B, Cancès E (1999) The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mol Struct (THEOCHEM) 464(1):211–226.  https://doi.org/10.1016/S0166-1280(98)00553-3 CrossRefGoogle Scholar
  61. 61.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3094.  https://doi.org/10.1021/cr9904009 CrossRefPubMedGoogle Scholar
  62. 62.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396.  https://doi.org/10.1021/jp810292n CrossRefPubMedGoogle Scholar
  63. 63.
    Grimme S (2012) Supramolecular binding thermodynamics by dispersion-corrected density functional theory. Chem Eur J 18(32):9955–9964.  https://doi.org/10.1002/chem.201200497 CrossRefPubMedGoogle Scholar
  64. 64.
    Funes-Ardoiz I, Paton RS GoodVibes V. 1.0.0.  https://doi.org/10.5281/zenodo.56.091
  65. 65.
    Peverati R, Truhlar DG (2014) Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Philos T Roy Soc A 372 (2011)Google Scholar
  66. 66.
    Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor-acceptor perspective. 1st edn. Cambridge University Press.  https://doi.org/10.2277/0521831288
  67. 67.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2016) Natural Bond Orbitals program NBO 6.0 edn. University of Wisconsin, Madison, USGoogle Scholar
  68. 68.
    Dias HVR, Lovely CJ (2008) Carbonyl and olefin adducts of coinage metals supported by poly(pyrazolyl)borate and poly(pyrazolyl)alkane ligands and silver mediated atom transfer reactions. Chem Rev 108(8):3223–3238.  https://doi.org/10.1021/cr078362d CrossRefPubMedGoogle Scholar
  69. 69.
    Hebben N, Himmel H-J, Eickerling G, Herrmann C, Reiher M, Herz V, Presnitz M, Scherer W (2007) The electronic structure of the Tris(ethylene) complexes [M(C2H4)3] (M=Ni, Pd, and Pt): a combined experimental and theoretical study. Chem Eur J 13(36):10078–10087.  https://doi.org/10.1002/chem.200700885 CrossRefPubMedGoogle Scholar
  70. 70.
    Haaland A, Samdal S, Seip R (1978) The molecular structure of monomeric methyl(cyclopentadienyl)zinc, (CH3)Zn(η-C5H5), determined by gas phase electron diffraction. J Organomet Chem 153(2):187–192.  https://doi.org/10.1016/S0022-328X(00)85041-X CrossRefGoogle Scholar
  71. 71.
    Budzelaar PHM, Boersma J, van der Kerk GJM, Spek AL, Duisenberg AJM (1985) The structure of dicyclopentadienylzinc. J Organomet Chem 281(2):123–130.  https://doi.org/10.1016/0022-328X(85)87100-X CrossRefGoogle Scholar
  72. 72.
    Benn R, Grondey H, Lehmkuhl H, Nehl H, Angermund K, Krüger C (1987) High-resolution CP-MAS 13C-NMR spectra of allylzinc compounds—structural similarities and differences in the solid state and in solution. Angew Chem Int Ed 26(12):1279–1280.  https://doi.org/10.1002/anie.198712791 CrossRefGoogle Scholar
  73. 73.
    Blom R, Haaland A, Weidlein J (1985) The molecular structure of bis(pentamethylcyclopentadienyl)zinc determined by gas electron diffraction. J Chem Soc Chem Commun 5:266–267.  https://doi.org/10.1039/c39850000266 CrossRefGoogle Scholar
  74. 74.
    Mazej Z, Benkič P (2005) Copper(I) hexafluoroantimonate—an example of a compound with CuI in a solely fluorine environment. J Fluor Chem 126(5):803–808.  https://doi.org/10.1016/j.jfluchem.2005.03.004 CrossRefGoogle Scholar
  75. 75.
    Mayer I (1986) On bond orders and valences in the ab initio quantum chemical theory. Int J Quantum Chem 29:73–84CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and TechnologyTarragonaSpain
  2. 2.BioISI-Biosystems and Integrative Sciences Institute, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  3. 3.Centro de Química Estrutural - Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal

Personalised recommendations