Skip to main content
Log in

Synthesis, characterization, and NMR studies of 1,2,3-triazolium ionic liquids: a good perspective regarding cytotoxicity

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Ionic liquids (ILs) have been extensively studied and are considered green solvents capable of replacing traditional organic solvents. In this study, seven 1,2,3-triazolium derivative ILs have been synthesized. In order to study the effect of the cation nature on the ILs cytotoxicity, their structures were first identified by 1H, 13C NMR 1D, and 2D spectroscopy. DFT calculations have also been performed in a way to help to provide an insightful structural analysis from 13C NMR spectroscopy. The comparison made with the NMR experimental shifts was quite important to show that the 1,2,3-triazolium derivatives have the expected structure shown here. The in vitro cytotoxicity of ILs toward macrophages showed that among the compounds tested, five did not exhibit expressive cytotoxicity on mammalian cells. Besides the well-established relationship between the carbonic chain size of the cation and the cytotoxicity, the log P of the compounds predicts that the toxicity increases with the size of the carbon chain, demonstrating that the most cytotoxic compound is also the most lipophilic one. The low cytotoxicity effect of ILs on mammalian cells points to their potential application in large-scale by industry.

Seven triazolium ILs were synthesized and their in vitro cytotoxicity on murine macrophages showed a relationship with the carbonic chain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Neto BAD, Spencer J (2012) The impressive chemistry, applications and features of ionic liquids: properties, catalysis & catalysts and trends. J Braz Chem Soc 23:987–1007

    Article  CAS  Google Scholar 

  2. Nulwala HB, Tang CN, Kail BW et al (2011) Probing the structure-property relationship of regioisomeric ionic liquids with click chemistry. Green Chem 13:3345–3349

    Article  CAS  Google Scholar 

  3. Lan W, Liu C-F, Sun R-C (2011) Fractionation of bagasse into cellulose, hemicelluloses, and lignin with ionic liquid treatment followed by alkaline extraction. J Agric Food Chem 59:8691–8701

    Article  CAS  PubMed  Google Scholar 

  4. Khan SS, Hanelt S, Liebscher J (2009) Versatile synthesis of 1, 2, 3-triazolium-based ionic liquids. ARKIVOC 12:193–208

    Google Scholar 

  5. Aizpurua JM, Fratila RM, Monasterio Z, Perez-Esnaola N, Andreieff E, Irastorza A, Sagartzazu-Aizpurua M (2014) Triazolium cations: from the "click" pool to multipurpose applications. New J Chem 38:474–480

    Article  CAS  Google Scholar 

  6. Plechkovaa NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    Article  Google Scholar 

  7. Anastas PT, Warner JC (2000) Green chemistry: theory and practice. Oxford University Press, New York, p 132

    Google Scholar 

  8. Dupont J, De Souza RF, Suarez PAZ (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102:3667–3692

    Article  CAS  PubMed  Google Scholar 

  9. Dupont J (2004) On the solid, liquid and solution structural organization of imidazolium ionic liquids. J Braz Chem Soc 15:341–350

    Article  CAS  Google Scholar 

  10. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576

    Article  CAS  PubMed  Google Scholar 

  11. Bourbigou HO, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A-Gen 373:1–56

    Article  CAS  Google Scholar 

  12. Yacob Z, Liebscher J (2011) 1,2,3-Triazolium salts as a versatile new class of ionic liquids. In: Handy S (ed) Ionic liquids - classes and properties. IntechOpen, London, pp 3–18

  13. Jeong Y, Ryu J-S (2010) Synthesis of 1,3-dialkyl-1,2,3-triazolium ionic liquids and their applications to the Baylis−Hillman reaction. J Organomet Chem 75:4183–4191

    Article  CAS  Google Scholar 

  14. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084

    Article  CAS  PubMed  Google Scholar 

  15. Mudraboyina BP, Obadia MM, Abdelhedi-Miladi I, Allaoua I, Drockenmuller E (2015) Versatile click functionalization of poly(1,2,3-triazolium ionic liquid)s. Eur Polym J 62:331–337

    Article  CAS  Google Scholar 

  16. Kohsaka Y, Yamamoto K, Kitayama T (2015) Stereoregular poly(methyl methacrylate) with double-clickable omega-end: synthesis and click reaction. Polym Chem 6:3601–3607

    Article  CAS  Google Scholar 

  17. Mirjafari A (2018) Ionic liquid syntheses via click chemistry: expeditious routes toward versatile functional materials. Chem Commun 54:2944–2961

    Article  CAS  Google Scholar 

  18. Nulwala H, Burke DJ, Khan A et al (2010) N-vinyltriazoles: a new functional monomer family through click chemistry. Macromolecules 43:5474–5477

    Article  CAS  Google Scholar 

  19. Radošević K, Cvjetko M, Kopjar N et al (2013) In vitro cytotoxicity assessment of imidazolium ionic liquids: biological effects in fish channel catfish ovary (CCO) cell line. Ecotoxicol Environ Saf 92:112–118

    Article  CAS  PubMed  Google Scholar 

  20. Tan WQ, Li Q, Dong F, Zhang JJ, Luan F, Wei LJ, Chen Y, Guo ZY (2018) Novel cationic chitosan derivative bearing 1,2,3-triazolium and pyridinium: synthesis, characterization, and antifungal property. Carbohydr Polym 182:180–187

    Article  CAS  PubMed  Google Scholar 

  21. Tseng MC, Yuan TC, Li Z, Chu YH (2016) Crowned ionic liquids for biomolecular interaction analysis. Anal Chem 88:10811–10815

    Article  CAS  PubMed  Google Scholar 

  22. Wang P, Zhang D, Zhou YY, Li Y, Fang HG, Wei HB, Ding YS (2018) A well-defined biodegradable 1,2,3-triazolium-functionalized PEG-b-PCL block copolymer: facile synthesis and its compatibilization for PLA/PCL blends. Ionics 24:787–795

    Article  CAS  Google Scholar 

  23. Raiguel S, Depuydt D, Vander Hoogerstraete T, Thomas J, Dehaen W, Binnemans K (2017) Selective alkaline stripping of metal ions after solvent extraction by base-stable 1,2,3-triazolium ionic liquids. Dalton Trans 46:5269–5278

    Article  CAS  PubMed  Google Scholar 

  24. Carmo AML, Stroppa PHF, Corrales CNR et al (2014) Synthesis of 1,2,3-triazolium-based ionic liquid and preliminary pretreatment to enhance hydrolysis of sugarcane bagasse. J Braz Chem Soc 25:2088–2093

    CAS  Google Scholar 

  25. Feldman AK, Colasson B, Fokin VV (2004) One-pot synthesis of 1,4-disubstituted 1,2,3-triazoles from in situ generated Azides. Org Lett 6:3897–3899

    Article  CAS  PubMed  Google Scholar 

  26. van Eikema Hommes NJR, Clark T (2005) Regression formulae for ab initio and density functional calculated chemical shifts. J Mol Model 11:175–185

    Article  CAS  PubMed  Google Scholar 

  27. Sun X-W, Xu P-F, Zhang Z-Y (1998) 1H and 13C NMR spectroscopy of substituted 1,2,3-triazoles. Magn Reson Chem 36:459–460

    Article  CAS  Google Scholar 

  28. Bugelski PJ, Atif U, Molton S et al (2000) A strategy for primary high throughput cytotoxicity screening in pharmaceutical toxicology. Pharm Res 17:1265–1272

    Article  CAS  PubMed  Google Scholar 

  29. Ekwall B, Silano V, Paganuzzi-Stammati A, Zucco F (1990) Toxicity tests with mammalian cell cultures. In: Bourdeau P et al (eds) Short-term toxicity tests for non-genotoxic effects. Wiley, New York

  30. Petkovic M, Seddon KR, Rebeloa LPN, Pereira CS (2011) Ionic liquids: a pathway to environmental acceptability. Chem Soc Rev 40:1383–1403

    Article  CAS  PubMed  Google Scholar 

  31. Mossman T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  Google Scholar 

  32. Steiner I, Stojanovic N, Bolje A, Brozovic A, Polancec D, Ambriovic-Ristov A, Stojkovic MR, Piantanida I, Eljuga D, Kosmrlj J, Osmak M (2016) Discovery of ‘click’ 1,2,3-triazolium salts as potential anticancer drugs. Radiol Oncol 50:280–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abagyan R, Totrov M, Kuznetsov D (1994) ICM–A new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15:488–506

    Article  CAS  Google Scholar 

  34. Lal S, Díez-Gonzalez S (2011) [CuBr(PPh3)3] for Azide−alkyne cycloaddition reactions under strict click conditions. J Organomet Chem 76:2367–2373

    Article  CAS  Google Scholar 

  35. Appukkuttan P, Dehaen W, Fokin VV, Van der Eycken E (2004) A microwave-assisted click chemistry synthesis of 1,4-disubstituted 1,2,3-Triazoles via a copper(I)-catalyzed three-component reaction. Org Lett 23:4223–4225

    Article  CAS  Google Scholar 

  36. Kidwai M, Jain A (2011) Regioselective synthesis of 1,4-disubstituted triazoles using bis[(L)prolinato-N,O]Zn complex as an efficient catalyst in water as a sole solvent. Appl Organomet Chem 25:620–625

    Article  CAS  Google Scholar 

  37. Stroppa PHF, Antinarelli LMR, Carmo AML et al (2017) Effect of 1,2,3-triazole salts, non-classical bioisosteres of miltefosine, on Leishmania amazonenses. Bioorg Med Chem 25:3034–3045

    Article  CAS  PubMed  Google Scholar 

  38. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  PubMed  Google Scholar 

  39. Feller D (1996) The role of databases in support of computational chemistry calculations. J Comput Chem 17:1571–1586

    Article  CAS  Google Scholar 

  40. Schuchardt KL, Didier BT, Elsethagen T et al (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47:1045–1052

    Article  CAS  PubMed  Google Scholar 

  41. Barros CL, De Oliveira PJP, Jorge FE et al (2010) Gaussian basis set of double zeta quality for atoms Rb through Xe: application in non-relativistic and relativistic calculations of atomic and molecular properties. Mol Phys 108:1965–1972

  42. Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys 132:114110–114115

    Article  CAS  PubMed  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB et al (2010) Gaussian 09 revision C.01. Gaussian Inc., Wallingford

    Google Scholar 

  44. Ditchfield R (1974) Self-consistent perturbation theory of diamagnetism. Mol Phys 27:789–807

    Article  CAS  Google Scholar 

  45. Wolinski K, Hilton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  46. Litchfield JT, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99–113

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank FAPEMIG (Process APQ-03830-16 and APQ-02068-14), CNPq, and CAPES for financial support. Also, LASC, ESC, and ADS would like to thank CNPq for the fellowship grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Antônio S. Costa.

Additional information

This paper belongs to Topical Collection XIX - Brazilian Symposium of Theoretical Chemistry (SBQT2017)

Electronic supplementary material

ESM 1

(DOCX 524 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glanzmann, N., Carmo, A.M.L., Antinarelli, L.M.R. et al. Synthesis, characterization, and NMR studies of 1,2,3-triazolium ionic liquids: a good perspective regarding cytotoxicity. J Mol Model 24, 160 (2018). https://doi.org/10.1007/s00894-018-3682-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3682-z

Keywords

Navigation