Skip to main content
Log in

Resonance bonding in XNgY (X = F, Cl, Br, I; Ng = Kr or Xe; Y = CN or NC) molecules: an NBO/NRT investigation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Several noble-gas-containing molecules XNgY were observed experimentally. However, the bonding in such systems is still not understood. Using natural bond orbital and natural resonance theory (NBO/NRT) methods, the present work investigated bonding of the title molecules. The results show that each of the studied XNgY molecules should be better described as a resonance hybrid of ω-bonding and \( \widehat{\sigma} \)-type long-bonding structures: X: Ng+ − Y, X − Ng+: Y, and X^Y. The ω-bonding and long-bonding make competing contributions to the composite resonance hybrid due to the accurately preserved bond order conservation principle. We find that the resonance bonding is highly tunable for these noble-gas-containing molecules due to its dependence on the nature of the halogen X or the central noble-gas atoms Ng. When the molecule XNgY consists of a relatively lighter Ng atom, a relatively low-electronegative X atom, and the CN fragment rather than NC, the long-bonding structure X^Y tends to be highlighted. In contrast, the heavy Ng atom and high-electronegative X atom will enhance the ω-bonding structure. Overall, the present work provides electronic principles and chemical insights that help understand the bonding in these XNgY species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bartlett N (1962) Synthesis of chemical compound Xe+[PtF6]. Proc Chem Soc 112:218–218

    Google Scholar 

  2. Hoppe R, Dähne W, Mattauch H, Rödder KM (1962) Fluorierung von xenon. Angew Chem 74:903

    Article  Google Scholar 

  3. Christe KO (2001) A renaissance in noble gas chemistry. Angew Chem Int Ed 40(8):1419–1421

    Article  CAS  Google Scholar 

  4. Lehmann JF, Mercier HPA, Schrobilgen GJ (2002) The chemistry of krypton. Coord Chem Rev 233:1–39

    Article  Google Scholar 

  5. Pointner BE, Suontamo RJ, Schrobilgen GJ (2006) Syntheses and X-ray crystal structures of α- and β-[XeO2F][SbF6], [XeO2F][AsF6], [FO2XeFXeO2F][AsF6], and [XeF5][SbF6]·XeOF4 and computational studies of the XeO2F+ and FO2XeFXeO2F+ cations and related species. Inorg Chem 45(4):1517–1534

    Article  CAS  PubMed  Google Scholar 

  6. Grochala W (2007) Atypical compounds of gases, which have been called ‘noble’. Chem Soc Rev 36:1632–1655

    Article  CAS  PubMed  Google Scholar 

  7. Grochala W, Khriachtchev L, Räsänen M (2011) Physics and chemistry at low temperatures. Pan Stanford, Singapore, p 419

    Book  Google Scholar 

  8. Zhang G, Fu L, Li H, Fan X, Chen D (2017) Insight into the bonding mechanism and the bonding covalency in noble gas–noble metal halides: an NBO/NRT investigation. J Phys Chem A 121(27):5183–5189

    Article  CAS  PubMed  Google Scholar 

  9. Pettersson M, Lundell J, Räsänen M (1995) Neutral rare-gas containing charge-transfer molecules in solid matrices. I. HXeCl, HXeBr, HXeI, and HKrCl in Kr and Xe. J Chem Phys 102:6423–6431

    Article  CAS  Google Scholar 

  10. Pettersson M, Lundell J, Khriachtchev L, Räsänen M (1998) Neutral rare-gas containing charge-transfer molecules in solid matrices. III. HXeCN, HXeNC, and HKrCN in Kr and Xe. J Chem Phys 109:618–625

    Article  CAS  Google Scholar 

  11. Khriachtchev L, Pettersson M, Runeberg N, Lundell J, Räsänen M (2000) A stable argon compound. Nature 406:874–876

    Article  CAS  PubMed  Google Scholar 

  12. Lundell J, Chaban GM, Gerber RB (2000) Combined ab initio and anharmonic vibrational spectroscopy calculations for rare gas containing fluorohydrides, HRgF. Chem Phys Lett 331:308–316

    Article  CAS  Google Scholar 

  13. Lundell J, Khriachtchev L, Pettersson M, Räsänen M (2000) Formation and characterization of neutral krypton and xenon hydrides in low-temperature matrices. J Low Temp Phys 26:680–690

    Article  CAS  Google Scholar 

  14. Khriachtchev L, Pettersson M, Lignell A, Räsänen M (2001) A more stable configuration of HArF in solid argon. J Am Chem Soc 123(35):8610–8611

    Article  CAS  PubMed  Google Scholar 

  15. Pettersson M, Khriachtchev L, Lignell A, Räsänen M, Bihary Z, Gerber RB (2002) HKrF in solid krypton. J Chem Phys 116:2508–2515

    Article  CAS  Google Scholar 

  16. Khriachtchev L, Tanskanen H, Lundell J, Pettersson M, Kiljunen H, Räsänen M (2003) Fluorine-free organoxenon chemistry: HXeCCH, HXeCC, and HXeCCXeH. J Am Chem Soc 125(16):4696–4697

    Article  CAS  PubMed  Google Scholar 

  17. Feldman VI, Sukhov FF, Orlov AY, Tyulpina IV (2003) Experimental evidence for the formation of HXeCCH: the first hydrocarbon with an inserted rare-gas atom. J Am Chem Soc 125(16):4698–4699

    Article  CAS  PubMed  Google Scholar 

  18. Khriachtchev L, Tanskanen H, Cohen A, Gerber RB, Lundell J, Pettersson M, Kiljunen H, Räsänen M (2003) A gate to organokrypton chemistry: HKrCCH. J Am Chem Soc 125(23):6876–6877

    Article  CAS  PubMed  Google Scholar 

  19. Gerber RB (2004) Formation of novel rare-gas molecules in low-temperature matrices. Annu Rev Phys Chem 55:55–78

    Article  CAS  PubMed  Google Scholar 

  20. Berski S, Silvi B, Lundell J, Noury S, Latajka Z (2001) The nature of binding in HRgY compounds (Rg = Ar, Kr, Xe; Y = F, Cl) based on the topological analysis of the electron localisation function (ELF). In: Maruani J et al (eds) New trends in quantum chemistry and physics. Kluwer, Dordrecht, pp 259–279

    Google Scholar 

  21. Tanskanen H, Khriachtchev L, Lundell J, Kiljunen H, Räsänen M (2003) Chemical compounds formed from diacetylene and rare-gas atoms: HKrC4H and HXeC4H. J Am Chem Soc 125(52):16361–16366

    Article  CAS  PubMed  Google Scholar 

  22. Lein M, Frunzke J, Frenking G (2004) Christian Klixbull Jørgensen and the nature of the chemical bond in HArF // optical spectra and chemical bonding in inorganic compounds, vol 106. Springer, Berlin, pp 181–191

    Google Scholar 

  23. Alabugin IV, Manoharan M, Weinhold F (2004) Blue-shifted and red-shifted hydrogen bonds in hypervalent rare-gas FRg−H···Y sandwiches. J Phys Chem A 108(21):4720–4730

    Article  CAS  Google Scholar 

  24. Khriachtchev L, Räsänen M, Gerber RB (2009) Noble-gas hydrides: new chemistry at low temperatures. Acc Chem Res 42(1):183–191

    Article  CAS  PubMed  Google Scholar 

  25. Pérez-Peralta N, Juárez R, Cerpa E, Bickelhaupt FM, Merino G (2009) Bonding of xenon hydrides. J Phys Chem A 113(35):9700–9706

    Article  CAS  PubMed  Google Scholar 

  26. Khriachtchev L, Domanskaya A, Lundell J, Akimov A, Räsänen M, Misochko E (2010) Matrix-isolation and ab initio study of HNgCCF and HCCNgF molecules (Ng = Ar, Kr, and Xe). J Phys Chem A 114(12):4181–4187

    Article  CAS  PubMed  Google Scholar 

  27. Juarez R, Zavala-Oseguera C, Jimenez-Halla JOC, Bickelhaupt FM, Merino G (2011) Radon hydrides: structure and bonding. Phys Chem Chem Phys 13:2222–2227

    Article  CAS  PubMed  Google Scholar 

  28. Wu HQ, Zhong RL, Kan YH, Sun SL, Zhang M, Xu HL, Su ZM (2013) After the electronic field: structure, bonding, and the first hyperpolarizability of HArF. J Comput Chem 34(11):952–957

    Article  CAS  PubMed  Google Scholar 

  29. Zhang G, Li H, Weinhold F, Chen D (2016) 3c/4e \( \widehat{\sigma} \)-type long-bonding competes with ω-bonding in noble-gas hydrides HNgY (Ng = He, Ne, Ar, Kr, Xe, Rn; Y = F, Cl, Br, I): a NBO/NRT perspective. Phys Chem Chem Phys 18:8015–8026

    Article  CAS  PubMed  Google Scholar 

  30. Zhang G, Zhang S, Chen D (2017) Long-bonding in HNgCN/NC (Ng = Noble Gas) molecules: an NBO/NRT investigation. J Phys Chem A 121(29):5524–5532

    Article  CAS  PubMed  Google Scholar 

  31. Zhang G, Song J, Fu L, Tang K, Su Y, Chen D (2018) Understanding and modulating high-energy property of noble-gas hydrides from their long-bonding: an NBO/NRT investigation on HNgCO+/CS+/OSi+ and HNgCN/NC (Ng = He, Ar, Kr, Xe, Rn) molecules. Phys Chem Chem Phys 20:10231–10239

  32. Duarte L, Khriachtchev L (2017) An aromatic noble-gas hydride: C6H5CCXeH. Sci Rep 7:3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Landis CR, Weinhold F (2013) 3c/4e \( \widehat{\sigma} \)-type long-bonding: a novel transitional motif toward the metallic delocalization limit. Inorg Chem 52(9):5154–5166

    Article  CAS  PubMed  Google Scholar 

  34. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin, Madison

    Google Scholar 

  35. Weinhold F (2012) Natural bond orbital analysis: a critical overview of relationships to alternative bonding perspectives. J Comput Chem 33(30):2363–2379

    Article  CAS  PubMed  Google Scholar 

  36. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) NBO 6.0. Theoretical Chemistry Institute, University of Wisconsin, Madison http://nbo6.chem.wisc.edu/

    Google Scholar 

  37. Weinhold F (2013) NBOPro 6.0. Theoretical Chemistry Institute, University of Wisconsin, Madison http://nbo6.chem.wisc.edu/nbopro_adv.htm

  38. Weinhold F, Landis CR, Glendening ED (2016) What is NBO analysis and how is it useful? Int Rev Phys Chem 35(3):399–440

    Article  CAS  Google Scholar 

  39. Glendening ED, Weinhold F (1998) Natural resonance theory: I. General formalism. J Comput Chem 19(6):593–609

    Article  CAS  Google Scholar 

  40. Glendening ED, Weinhold F (1998) Natural resonance theory: II. Natural bond order and valency. J Comput Chem 19(6):610–627

    Article  CAS  Google Scholar 

  41. Glendening ED, Badenhoop JK, Weinhold F (1998) Natural resonance theory: III. Chemical applications. J Comput Chem 19(6):628–646

    Article  CAS  Google Scholar 

  42. Arppe T, Khriachtchev L, Lignell A, Domanskaya AV, Räsänen M (2012) Halogenated xenon cyanides ClXeCN, ClXeNC, and BrXeCN. Inorg Chem 51(7):4398–4402

    Article  CAS  PubMed  Google Scholar 

  43. Zhu C, Räsänen M, Khriachtchev L (2015) Fluorinated noble-gas cyanides FKrCN, FXeCN, and FXeNC. J Chem Phys 143(7):074306

    Article  CAS  PubMed  Google Scholar 

  44. Frisch JA, Trucks MJ, Schlegel GW, Scuseria HB, Robb GE, Cheeseman MA, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G (2009) Gaussian 09, revision B.01. Gaussian, Inc., Wallingford

    Google Scholar 

  45. Purvis GD, Bartlett RJ (1982) A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J Chem Phys 76(4):1910–1918

    Article  CAS  Google Scholar 

  46. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) A fifth-order perturbation comparison of electron correlation theories. Chem Phys Lett 157(6):479–483

    Article  CAS  Google Scholar 

  47. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B: Condens Matter Mater Phys 37(2):785

    Article  CAS  Google Scholar 

  48. Becke AD (1993). J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  49. Feller D (1996) The role of databases in support of computational chemistry calculations. J Comput Chem 17(13):1571–1586

    Article  CAS  Google Scholar 

  50. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90(2):1007–1023

    Article  CAS  Google Scholar 

  51. Foresman JB, Frisch E (1996) Exploring chemistry with electronic structure methods. Gaussian, Inc., Pittsburgh

    Google Scholar 

  52. Rappoport D, Furche F (2010) Property-optimized Gaussian basis sets for molecular response calculations. J Chem Phys 133(13):134105

    Article  CAS  PubMed  Google Scholar 

  53. Werner HJ, Knowles PJ, Manby FR, Schutz M et al (2010) MOLPRO, version 2010.1, a package of ab initio programs, see http://www.molpro.net

  54. Zhang G, Yue H, Weinhold F, Wang H, Li H, Chen D (2015) Resonance character of copper/silver/gold bonding in small molecule···M–X (X=F, Cl, Br, CH3, CF3) complexes. ChemPhysChem 16(11):2424–2431

    Article  CAS  PubMed  Google Scholar 

  55. Zhang G, Wang H, Yue H, Li H, Zhang S, Fu L (2015) Ligand effects due to resonance character in LAuCCH (L=F, Cl, Br, I, CCH) complexes: an NBO/NRT analysis. J Mol Model 21:159

    Article  CAS  PubMed  Google Scholar 

  56. Politzer P, Murray J, Clark T (2015) Mathematical modeling and physical reality in noncovalent interactions. J Mol Model 21:52

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Shandong Province (No. ZR2015BM025). We thank Professor Frank Weinhold of the University of Wisconsin-Madison for his continuous help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiqiu Zhang.

Electronic supplementary material

ESM 1

(DOC 34.4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Su, Y., Jia, Y. et al. Resonance bonding in XNgY (X = F, Cl, Br, I; Ng = Kr or Xe; Y = CN or NC) molecules: an NBO/NRT investigation. J Mol Model 24, 129 (2018). https://doi.org/10.1007/s00894-018-3665-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3665-0

Keywords

Navigation