Amino acid adsorption on anatase (101) surface at vacuum and aqueous solution: a density functional study

Original Paper
  • 78 Downloads

Abstract

The adsorption of 20 amino acids (AAs) on the (101) surface of anatase titanium dioxide (TiO2) has been investigated under the scheme of density functional theory. Through the analysis of adsorption geometries, amino group and side chains of AAs have been identified as the major side to adsorb on TiO2, while the carboxyl group prefers to stay outside to avoid the repulsion between negatively charged oxygen from TiO2 and AAs. On the surface, two-coordinated oxygen is the major site to stabilize AAs through O–H interactions. The above conclusion does not change when it is in the aqueous solution based on the calculations with AAs surrounded by explicit water molecules. The above knowledge is helpful in predicting how AAs and even peptides adsorb on inorganic materials.

Graphical abstract

The adsorption of 20 amino acids (AAs) on the (101) surface of anatase titanium dioxide (TiO2) has been investigated under the scheme of density functional theory.

Keywords

Anatase (101) surface Amino acids Density functional theory Adsorption 

Notes

Acknowledgements

We acknowledge the Education Committee of Sichuan Province (18ZB0487) for financial support.

Supplementary material

894_2018_3641_MOESM1_ESM.doc (3 mb)
ESM 1 Adsorption structures and energies (eV, below every picture) for AAs on anatase TiO2 (101) surface generated from MD calculation and further optimized at DFT level. Different local minimum obtained from DFT calculations and tests with DFT + U. (DOC 3058 kb)

References

  1. 1.
    Shiba K (2010) Exploitation of peptide motif sequences and their use in nanobiotechnology. Curr Opin Biotechnol 21:412–425CrossRefGoogle Scholar
  2. 2.
    Busseron E, Ruff Y, Moulin E, Giuseppone N (2013) Supramolecular self-assemblies as functional nanomaterials. Nano 5:7098–7140Google Scholar
  3. 3.
    Wahab HS (2012) Quantum chemical modeling study of adsorption of benzoic acid on anatase TiO2 nanoparticles. J Mol Model 18:2709–2716CrossRefGoogle Scholar
  4. 4.
    Zhao Y, Xiong T, Huang W (2010) Effect of heat treatment on bioactivity of anodic titania films. Appl Surf Sci 256:3073–3076CrossRefGoogle Scholar
  5. 5.
    Dimitrievska S, Whitfield J, Hacking SA, Bureau MN (2009) Novel carbon fiber composite for hip replacement with improved in vitro and in vivo osseointegration. J Biomed Mater Res Part A 91A:37–51CrossRefGoogle Scholar
  6. 6.
    Latour RA (2008) Molecular simulation of protein–surface interactions: benefits, problems, solutions, and future directions. Biointerphases 3:FC2–FC12CrossRefGoogle Scholar
  7. 7.
    Felice RD, Corni S (2011) Simulation of peptide–surface recognition. J Phys Chem Lett 2:1510–1519CrossRefGoogle Scholar
  8. 8.
    Ercan B, Kummer KM, Tarquinio KM, Webster TJ (2011) Decreased Staphylococcus aureus biofilm growth on anodized nanotubular titanium and the effect of electrical stimulation. Acta Biomater 7:3003–3012CrossRefGoogle Scholar
  9. 9.
    Zhao Q, Topham N, Anderson JM, Hiltner A, Lodoen G, Payet CR (1991) Foreign-body giant cells and polyurethane biostability: in vivo correlation of cell adhesion and surface cracking. J Biomed Mater Res 25:177–183CrossRefGoogle Scholar
  10. 10.
    Petersion AM, Pilz-Allen C, Kolesnikova T, Möhwald H, Shchukin D (2013) Adsorption of arginine−glycine−aspartate tripeptide onto negatively charged rutile (110) mediated by cations: the effect of surface hydroxylation. ACS Appl Mater Interfaces 5:2567–2579CrossRefGoogle Scholar
  11. 11.
    Köppen S, Bronkalla O, Langel W (2008) Molecular simulation of protein–surface interactions. J Phys Chem C 112:13600–13606CrossRefGoogle Scholar
  12. 12.
    Vinu A, Hossain KZ, Kumar GS, Ariga K (2006) Adsorption of l-histidine over mesoporous carbon molecular sieves. Carbon 44:530–536CrossRefGoogle Scholar
  13. 13.
    Nancollas GH (1979) The growth of crystals in solution. Adv Colloid Interf Sci 10:215–252CrossRefGoogle Scholar
  14. 14.
    Demopoulos GP (2009) Aqueous precipitation and crystallization for the production of particulate solids with desired properties. Hydrometallurgy 96:199–214CrossRefGoogle Scholar
  15. 15.
    Xu Y, Schwartz FW (1994) Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces. Environ Sci Technol 28:1472–1480CrossRefGoogle Scholar
  16. 16.
    Jimenez-Izal E, Chiatti F, Corno M, Rimola A, Ugliengo P (2012) Glycine adsorption at nonstoichiometric (010) hydroxyapatite surfaces: a B3LYP study. J Phys Chem C 116:14561–14567CrossRefGoogle Scholar
  17. 17.
    Jahromi MT, Yao G, Cerruti M (2013) The importance of amino acid interactions in the crystallization of hydroxyapatite. J R Soc Interface 10:1–14Google Scholar
  18. 18.
    Jahromi MT, Cerruti M (2015) Amino acid/ion aggregate formation and their role in hydroxyapatite precipitation. Cryst Growth Des 15:1096–1104CrossRefGoogle Scholar
  19. 19.
    Rimola A, Costa D, Sodupe M, Lambert J-F, Ugliengo P (2013) Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments. Chem Rev 113:4216–4313CrossRefGoogle Scholar
  20. 20.
    Rimola A, Sodupe M, Ugiengo P (2009) Affinity scale for the interaction of amino acids with silica surfaces. J Phys Chem C 113:5741–5750CrossRefGoogle Scholar
  21. 21.
    Lomenech C, Bery G, Costa D, Stievano L, Lambert J-F (2005) Theoretical and experimental study of the adsorption of neutral glycine on silica from the gas phase. Chem Phys Chem 6:1061–1070CrossRefGoogle Scholar
  22. 22.
    Folliet N, Gervais C, Costa D, Laurent G, Babonneau F, Stievano L, Lambert J-F, Tielens F (2013) A molecular picture of the adsorption of glycine in mesoporous silica through NMR experiments combined with DFT-D calculations. J Phys Chem C 117:4104–4114CrossRefGoogle Scholar
  23. 23.
    Nonella M, Seeger S (2008) Investigating alanine-silica interaction by means of first-principles molecular-dynamics simulations. Chem Phys Chem 9:414–421CrossRefGoogle Scholar
  24. 24.
    Rimola A, Como M, Zicovich-Wilson CM, Ugliengo P (2009) Ab initio modeling of protein/biomaterial interactions: competitive adsorption between glycine and water onto hydroxyapatite surfaces. Phys Chem Chem Phys 11:9005–9007CrossRefGoogle Scholar
  25. 25.
    Rimola A, Como M, Zicovich-Wilson CM, Ugliengo P (2008) Ab initio modeling of protein/biomaterial interactions: glycine adsorption at hydroxyapatite surfaces. J Am Chem Soc 130:16181–16183CrossRefGoogle Scholar
  26. 26.
    Rimola A, Sakhno Y, Bertinetti L, Lelli M, Martra G, Ugliengo P (2011) Toward a surface science model for biology: glycine adsorption on nanohydroxyapatite with well-defined surfaces. J Phys Chem Lett 2:1390–1394CrossRefGoogle Scholar
  27. 27.
    Roddick-Lanzilotta A, McQuillan AJ (2000) An in situ infrared spectroscopic study of glutamic acid and of aspartic acid adsorbed on TiO2: implications for the biocompatibility of titanium. J Colloid Interface Sci 227:48–54CrossRefGoogle Scholar
  28. 28.
    Nosaka AY, Tanaka G, Nosaka Y (2014) Study by use of 1H NMR spectroscopy of the adsorption and decomposition of glycine, leucine, and derivatives in TiO2 photocatalysis. J Phys Chem B 118:7561–7567CrossRefGoogle Scholar
  29. 29.
    Tran TH, Nosaka AY, Nosaka Y (2006) Adsorption and photocatalytic decomposition of amino acids in TiO2 photocatalytic systems. J Phys Chem B 110:25525–25531CrossRefGoogle Scholar
  30. 30.
    Thomas AG, Syres KL (2012) Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces. Chem Soc Rev 41:4207–4217CrossRefGoogle Scholar
  31. 31.
    Guo Y, Lu X, Zhang H, Weng J, Watari F, Leng Y (2011) DFT study of the adsorption of aspartic acid on pure, N-doped, and Ca-doped rutile (110) surfaces. J Phys Chem C 115:18572–18581CrossRefGoogle Scholar
  32. 32.
    Li C, Monti S, Ågren H, Carravetta V (2014) Cysteine on TiO2(110): a theoretical study by reactive dynamics and photoemission spectra simulation. Langmuir 30:8819–8828CrossRefGoogle Scholar
  33. 33.
    Arrouvel C, Diawara B, Costa D, Marcus P (2007) DFT periodic study of the adsorption of glycine on the anhydrous and hydroxylated (0001) surfaces of α-alumina. J Phys Chem C 111:18164–18173CrossRefGoogle Scholar
  34. 34.
    Berezin NB, Sagdeev KA, Gudin NV, Roev VG, Mezhevich ZV (2005) Electrochemical reduction of zinc complexes from glycinate solutions. Russ J Electrochem 41:203–205CrossRefGoogle Scholar
  35. 35.
    Irrera S, Costa D, Marcus P (2009) DFT periodic study of adsorption of glycine on the (0001) surface of zinc terminated ZnO. J Mol Struct THEOCHEM 903:49–58CrossRefGoogle Scholar
  36. 36.
    Costa D, Carrain P-A, Diawara B, Marcus P (2011) Biomolecule-biomaterial interaction: a DFT-D study of glycine adsorption and self-assembly on hydroxylated Cr2O3 surfaces. Langmuir 27:2747–2760CrossRefGoogle Scholar
  37. 37.
    Carrain P-A, Costa D, Marcus P (2011) Biomaterial−biomolecule interaction: DFT-D study of glycine adsorption on Cr2O3. J Phys Chem C 115:719–727Google Scholar
  38. 38.
    Hoffmann MR, Martin ST, Wonyong C, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  39. 39.
    Yang Y, Lai Y, Zhang Q, Wu K, Zhang L, Lin C, Tang P (2010) A novel electrochemical strategy for improving blood compatibility of titanium-based biomaterials. Colloids Surf B 79:309–313CrossRefGoogle Scholar
  40. 40.
    Weng Y, Song Q, Zhou Y, Zhang L, Wang J, Chen J, Leng Y, Li S, Huang N (2011) Immobilization of selenocystamine on TiO2 surfaces for in situ catalytic generation of nitric oxide and potential application in intravascular stents. Biomaterials 32:1253–1263CrossRefGoogle Scholar
  41. 41.
    Min L, Cai K, Zhao L, Chen X, Hou Y, Yang Z (2011) Surface functionalization of TiO2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells. Biomacromolecules 12:1097–1105CrossRefGoogle Scholar
  42. 42.
    Miyauchi T, Yamada M, Yamamoto A, Iwasa F, Suzawa T, Kamijo R, Baba K, Ogawa T (2010) The enhanced characteristics of osteoblast adhesion to photofunctionalized nanoscale TiO2 layers on biomaterials surfaces. Biomaterials 31:3827–3839CrossRefGoogle Scholar
  43. 43.
    Spadavecchia J, Boujday S, Landoulsi J, Pradier C-M (2011) nPEG-TiO2 nanoparticles: a facile route to elaborate nanostructured surfaces for biological applications. ACS Appl Mater Interfaces 3:2637–2642CrossRefGoogle Scholar
  44. 44.
    Wu S, Weng Z, Liu X, Yeung KWK, Chu PK (2014) Functionalized TiO2 based nanomaterials for biomedical applications. Adv Funct Mater 24:5464–5481CrossRefGoogle Scholar
  45. 45.
    Monti S, van Duin ACT, Kim SY, Barone V (2012) Exploration of the conformational and reactive dynamics of glycine and diglycine on TiO2: computational investigations in the gas phase and in solution. J Phys Chem C 116:5141–5150CrossRefGoogle Scholar
  46. 46.
    Sultan AM, Hughes ZE, Walsh TR (2014) Binding affinities of amino acid analogues at the charged aqueous titania interface: implications for titania-binding peptides. Langmuir 30:13321–13329CrossRefGoogle Scholar
  47. 47.
    Zhao YL, Koppen S, Frauenheim T (2011) An SCC-DFTB/MD study of the adsorption of zwitterionic glycine on a geminal hydroxylated silica surface in an explicit water environment. J Phys Chem C 115:9615–9621CrossRefGoogle Scholar
  48. 48.
    Costa D, Tougerti A, Tielens F, Gervais C, Stievano L, Lambert JF (2008) DFT study of the adsorption of microsolvated glycine on a hydrophilic amorphous silica surface. Phys Chem Chem Phys 10:6360–6368CrossRefGoogle Scholar
  49. 49.
    Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229CrossRefGoogle Scholar
  50. 50.
    O’Rourke C, Bowler DR (2010) Adsorption of thiophene-conjugated sensitizers on TiO2 anatase (101). J Phys Chem C 114:20240–20248CrossRefGoogle Scholar
  51. 51.
    Rahaman O, van Duin ACT, Goddard ШWA, Doren DJ (2011) Development of a ReaxFF reactive force field for glycine and application to solvent effect and tautomerization. J Phys Chem B 115:249–261CrossRefGoogle Scholar
  52. 52.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19CrossRefGoogle Scholar
  53. 53.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  54. 54.
    Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  55. 55.
    Moellmann J, Grimme S (2014) DFT-D3 study of some molecular crystals. J Phys Chem C 118:7615–7621CrossRefGoogle Scholar
  56. 56.
    Risthaus T, Grimme S (2013) Benchmarking of London dispersion-accounting density functional theory methods on very large molecular complexes. J Chem Theory Comput 9:1580–1591CrossRefGoogle Scholar
  57. 57.
    Wang J, Yang M, Deng D, Qiu S (2017) The adsorption of NO, NH3, N2 on carbon surface: a density functional theory study. J Mol Model 23:262CrossRefGoogle Scholar
  58. 58.
    Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B 57:1505–1509CrossRefGoogle Scholar
  59. 59.
    Yu D, Zhou W, Liu Y, Zhou B, Wu P (2015) Density functional theory study of the structural, electronic and optical properties of C-doped anatase TiO2(101) surface. Phys Lett A 379:1666–1670CrossRefGoogle Scholar
  60. 60.
    Falzon CT, Wang F, Pang W (2006) Orbital signatures of methyl in L-alanine. J Phys Chem B 110:9713–9719CrossRefGoogle Scholar
  61. 61.
    Santos AFLO, Notario R, da Silva MAVR (2014) Thermodynamic and conformational study of proline stereoisomers. J Phys Chem B 118:10130–10141CrossRefGoogle Scholar
  62. 62.
    Garcia AR, de Barros RB, Lourenço JP, Ilharco LM (2008) The infrared spectrum of solid L-alanine: influence of pH-induced structural changes. J Phys Chem A 112:8280–8287CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Material ScienceSichuan Normal UniversityChengduChina
  2. 2.Institute of Atomic and Molecular PhysicsSichuan UniversityChengduChina

Personalised recommendations