Skip to main content
Log in

Do dihydroxymagnesium carboxylates form Grignard-type reagents? A theoretical investigation on decarboxylative fragmentation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Dihydroxymagnesium carboxylates [(OH)2MgO2CR] were probed for decarboxylation on a theoretical level, by utilizing both Møller-Plesset perturbation theory (MP2) and density functional theory (B3LYP-DFT) computations. This study is connected to the question of whether this recently introduced, astrobiologically relevant chemical class may form Grignard-type reagent molecules. To extract trends for a broad molecular mass range, different linear alkyl chain lengths between C4 and C11 were computed. The forward energy barrier for decarboxylation reactions increases linearly as a function of the ligand’s chain length. Decarboxylation-type fragmentations of these organomagnesium compounds seem to be improbable in non-catalytic, low energetic environments. A high forward energy barrier (EMP2 > 55 kcal mol−1) towards a described transition state restricts the release of CO2. Nevertheless, we propose the release of CO2 on a theoretical level, as been revealed via an intramolecular nucleophilic attack mechanism. Once the challenging transition state for decarboxylation is overcome, a stable Mg–C bond is formed. These mechanistic insights were gained by help of natural bond orbital analysis. The Cα atom (first carbon atom in the ligand chain attached to the carboxyl group) is thought to prefer binding towards the electrophilic magnesium coordination center, rather than towards the electrophilic CO2-carbon atom. Additionally, the putatively formed Grignard-type OH-bearing product molecules possess a more polarized Mg–C bond in comparison to RMgCl species. Therefore, carbanion formation from OH-bearing Grignard-type molecules is made feasible for triggering C–C bond formation reactions.

This study asks whether recently introduced, astrobiologically dihydroxymagnesium carboxylates form Grignard-type reagent molecules via decarboxylative fragmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rappoport Z, Marek I (2008) The chemistry of Organomagnesium compounds, 2 volume set. Wiley, New York, p 173

  2. The Nobel Prize in Chemistry (1912) http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1912/. Accessed 6 May 2017

  3. The Nobel Prize in Chemistry (2001) http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2001/. Accessed 6 May 2017

  4. Frankland E, Ann JL (1850) J Chem Soc 2:263–296

    Google Scholar 

  5. Grignard V (1901) Ann Chim 24:433–490

    CAS  Google Scholar 

  6. Shirley DA (1954) Organic reactions

  7. Elschenbroich C (2016) Organometallics. Wiley, New York

  8. Astruc D (2007) Organometallic chemistry and catalysis. Springer, Berlin, p 291

  9. Hartwig JF (2008) Nature 455:314–322

    Article  CAS  Google Scholar 

  10. Kaim W, Schwederski B, Klein A (2013) Bioinorganic chemistry–inorganic elements in the chemistry of life: an introduction and guide. Wiley, New York

  11. Haiech J, Derancourt J, Pechere JF, Demaille JG (1979) Biochemistry 18:2752–2758

    Article  CAS  Google Scholar 

  12. Rosenzweig A, Frederick C, Lippard S, Nordlund P (1993) Nature 366:537–543

    Article  CAS  Google Scholar 

  13. Sousa SF, Fernandes PA, Ramos MJ (2007) J Am Chem Soc 129:1378–1385

    Article  CAS  Google Scholar 

  14. Duchácková L, Schröder D, Roithová J (2011) Inorg Chem 50:3153–3158

    Article  Google Scholar 

  15. Andersson I (2008) J Exp Bot 59:1555–1568

    Article  CAS  Google Scholar 

  16. Ruf A, Kanawati B, Hertkorn N, Yin Q-Z, Moritz F, Harir M, Lucio M, Michalke B, Wimpenny J, Shilobreeva S, Bronsky B, Saraykin V, Gabelica Z, Gougeon RD, Quirico E, Ralew S, Jakubowski T, Haack H, Gonsior M, Jenniskens P, Hinman NW, Schmitt-Kopplin P (2017) Proc Natl Acad Sci USA 114:2819–2824. https://doi.org/10.1073/pnas.1616019114

    Article  CAS  Google Scholar 

  17. Schmitt-Kopplin P, Gabelica Z, Gougeon RD, Fekete A, Kanawati B, Harir M, Gebefuegi I, Eckel G, Hertkorn N (2010) Proc Natl Acad Sci USA 107:2763–2768

    Article  CAS  Google Scholar 

  18. Hertkorn N, Harir M, Schmitt-Kopplin P (2015) Magn Reson Chem 53:754–768

    Article  CAS  Google Scholar 

  19. Fioroni M (2016) Comput Theoret Chem 1084:196–212

    Article  CAS  Google Scholar 

  20. Marty P, de Parseval P, Klotz A, Chaudret B, Serra G, Boissel P (1996) Chem Phys Lett 256:669–674

    Article  CAS  Google Scholar 

  21. Serra G, Chaudret B, Saillard Y, Le Beuze A, Rabaa H, Ristorcelli I, Klotz A (1992) Astro Astrophys 260:489–493

    CAS  Google Scholar 

  22. Khairallah GN, Thum CC, Lesage D, Tabet J-C, O’Hair RA (2013) Organometallics 32:2319–2328

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision A.1. Gaussian Inc, Wallingford CT

    Google Scholar 

  24. Schlegel HB (1982) J Comput Chem 3:214–218

    Article  CAS  Google Scholar 

  25. Schlegel HB (1984) Theor Chim Acta 66:333–340

    Article  CAS  Google Scholar 

  26. Császár P, Pulay P (1984) J Mol Struct 114:31–34

    Article  Google Scholar 

  27. Gonzalez C, Schlegel H (1989) J Chem Phys 90:2154. https://doi.org/10.1063/1.456010

    Article  CAS  Google Scholar 

  28. Gonzalez C, Schlegel H (1990) J Phys Chem 94:5523. https://doi.org/10.1021/j100377a021

    Article  CAS  Google Scholar 

  29. Dennington R, Keith TA, Millam JM (2016) GaussView Version 3. Semichem Inc. Shawnee Mission KS

  30. Foresman JB, Frisch A (1993) Exploring chemistry with electronic structure methods: a guide to using Gaussian. Gaussian, Inc, Wallingford CT

  31. Jensen F (2002) J Chem Phys 117:9234–9240

    Article  CAS  Google Scholar 

  32. Chamorro E, Duque-Noreña M, Pérez P (2009) J Mol Struct THEOCHEM 896:73–79

    Article  CAS  Google Scholar 

  33. Van Klink GP, de Boer HJ, Schat G, Akkerman OS, Bickelhaupt F, Spek AL (2002) Organometallics 21:2119–2135

    Article  Google Scholar 

  34. Sattler JJ, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Chem Rev 114:10613–10653

    Article  CAS  Google Scholar 

  35. Murray RE, Walter EL, Doll KM (2014) ACS Catal 4:3517–3520

    Article  CAS  Google Scholar 

  36. Le Saux T, Plasson R, Jullien L (2014) Chem Commun 50:6189–6195

    Article  Google Scholar 

  37. Schlesener C, Amatore C, Kochi J (1984) J Am Chem Soc 106:3567–3577

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge Daniel Hemmler for data analytical support and discussions thereof.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander Ruf or Basem Kanawati.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

ESM 1

(DOC 547 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruf, A., Kanawati, B. & Schmitt-Kopplin, P. Do dihydroxymagnesium carboxylates form Grignard-type reagents? A theoretical investigation on decarboxylative fragmentation. J Mol Model 24, 106 (2018). https://doi.org/10.1007/s00894-018-3639-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3639-2

Keywords

Navigation