Advertisement

Do dihydroxymagnesium carboxylates form Grignard-type reagents? A theoretical investigation on decarboxylative fragmentation

  • Alexander Ruf
  • Basem Kanawati
  • Philippe Schmitt-Kopplin
Original Paper

Abstract

Dihydroxymagnesium carboxylates [(OH)2MgO2CR] were probed for decarboxylation on a theoretical level, by utilizing both Møller-Plesset perturbation theory (MP2) and density functional theory (B3LYP-DFT) computations. This study is connected to the question of whether this recently introduced, astrobiologically relevant chemical class may form Grignard-type reagent molecules. To extract trends for a broad molecular mass range, different linear alkyl chain lengths between C4 and C11 were computed. The forward energy barrier for decarboxylation reactions increases linearly as a function of the ligand’s chain length. Decarboxylation-type fragmentations of these organomagnesium compounds seem to be improbable in non-catalytic, low energetic environments. A high forward energy barrier (EMP2 > 55 kcal mol−1) towards a described transition state restricts the release of CO2. Nevertheless, we propose the release of CO2 on a theoretical level, as been revealed via an intramolecular nucleophilic attack mechanism. Once the challenging transition state for decarboxylation is overcome, a stable Mg–C bond is formed. These mechanistic insights were gained by help of natural bond orbital analysis. The Cα atom (first carbon atom in the ligand chain attached to the carboxyl group) is thought to prefer binding towards the electrophilic magnesium coordination center, rather than towards the electrophilic CO2-carbon atom. Additionally, the putatively formed Grignard-type OH-bearing product molecules possess a more polarized Mg–C bond in comparison to RMgCl species. Therefore, carbanion formation from OH-bearing Grignard-type molecules is made feasible for triggering C–C bond formation reactions.

Graphical abstract

This study asks whether recently introduced, astrobiologically dihydroxymagnesium carboxylates form Grignard-type reagent molecules via decarboxylative fragmentation.

Keywords

Organometallics Astrochemistry Organomagnesium molecules Grignard reagent DFT MP2 NBO 

Notes

Acknowledgment

We gratefully acknowledge Daniel Hemmler for data analytical support and discussions thereof.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

894_2018_3639_MOESM1_ESM.doc (547 kb)
ESM 1 (DOC 547 kb)

References

  1. 1.
    Rappoport Z, Marek I (2008) The chemistry of Organomagnesium compounds, 2 volume set. Wiley, New York, p 173Google Scholar
  2. 2.
    The Nobel Prize in Chemistry (1912) http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1912/. Accessed 6 May 2017
  3. 3.
    The Nobel Prize in Chemistry (2001) http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2001/. Accessed 6 May 2017
  4. 4.
    Frankland E, Ann JL (1850) J Chem Soc 2:263–296Google Scholar
  5. 5.
    Grignard V (1901) Ann Chim 24:433–490Google Scholar
  6. 6.
    Shirley DA (1954) Organic reactionsGoogle Scholar
  7. 7.
    Elschenbroich C (2016) Organometallics. Wiley, New YorkGoogle Scholar
  8. 8.
    Astruc D (2007) Organometallic chemistry and catalysis. Springer, Berlin, p 291Google Scholar
  9. 9.
    Hartwig JF (2008) Nature 455:314–322CrossRefGoogle Scholar
  10. 10.
    Kaim W, Schwederski B, Klein A (2013) Bioinorganic chemistry–inorganic elements in the chemistry of life: an introduction and guide. Wiley, New YorkGoogle Scholar
  11. 11.
    Haiech J, Derancourt J, Pechere JF, Demaille JG (1979) Biochemistry 18:2752–2758CrossRefGoogle Scholar
  12. 12.
    Rosenzweig A, Frederick C, Lippard S, Nordlund P (1993) Nature 366:537–543CrossRefGoogle Scholar
  13. 13.
    Sousa SF, Fernandes PA, Ramos MJ (2007) J Am Chem Soc 129:1378–1385CrossRefGoogle Scholar
  14. 14.
    Duchácková L, Schröder D, Roithová J (2011) Inorg Chem 50:3153–3158CrossRefGoogle Scholar
  15. 15.
    Andersson I (2008) J Exp Bot 59:1555–1568CrossRefGoogle Scholar
  16. 16.
    Ruf A, Kanawati B, Hertkorn N, Yin Q-Z, Moritz F, Harir M, Lucio M, Michalke B, Wimpenny J, Shilobreeva S, Bronsky B, Saraykin V, Gabelica Z, Gougeon RD, Quirico E, Ralew S, Jakubowski T, Haack H, Gonsior M, Jenniskens P, Hinman NW, Schmitt-Kopplin P (2017) Proc Natl Acad Sci USA 114:2819–2824.  https://doi.org/10.1073/pnas.1616019114 CrossRefGoogle Scholar
  17. 17.
    Schmitt-Kopplin P, Gabelica Z, Gougeon RD, Fekete A, Kanawati B, Harir M, Gebefuegi I, Eckel G, Hertkorn N (2010) Proc Natl Acad Sci USA 107:2763–2768CrossRefGoogle Scholar
  18. 18.
    Hertkorn N, Harir M, Schmitt-Kopplin P (2015) Magn Reson Chem 53:754–768CrossRefGoogle Scholar
  19. 19.
    Fioroni M (2016) Comput Theoret Chem 1084:196–212CrossRefGoogle Scholar
  20. 20.
    Marty P, de Parseval P, Klotz A, Chaudret B, Serra G, Boissel P (1996) Chem Phys Lett 256:669–674CrossRefGoogle Scholar
  21. 21.
    Serra G, Chaudret B, Saillard Y, Le Beuze A, Rabaa H, Ristorcelli I, Klotz A (1992) Astro Astrophys 260:489–493Google Scholar
  22. 22.
    Khairallah GN, Thum CC, Lesage D, Tabet J-C, O’Hair RA (2013) Organometallics 32:2319–2328CrossRefGoogle Scholar
  23. 23.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision A.1. Gaussian Inc, Wallingford CTGoogle Scholar
  24. 24.
    Schlegel HB (1982) J Comput Chem 3:214–218CrossRefGoogle Scholar
  25. 25.
    Schlegel HB (1984) Theor Chim Acta 66:333–340CrossRefGoogle Scholar
  26. 26.
    Császár P, Pulay P (1984) J Mol Struct 114:31–34CrossRefGoogle Scholar
  27. 27.
    Gonzalez C, Schlegel H (1989) J Chem Phys 90:2154.  https://doi.org/10.1063/1.456010 CrossRefGoogle Scholar
  28. 28.
    Gonzalez C, Schlegel H (1990) J Phys Chem 94:5523.  https://doi.org/10.1021/j100377a021 CrossRefGoogle Scholar
  29. 29.
    Dennington R, Keith TA, Millam JM (2016) GaussView Version 3. Semichem Inc. Shawnee Mission KSGoogle Scholar
  30. 30.
    Foresman JB, Frisch A (1993) Exploring chemistry with electronic structure methods: a guide to using Gaussian. Gaussian, Inc, Wallingford CTGoogle Scholar
  31. 31.
    Jensen F (2002) J Chem Phys 117:9234–9240CrossRefGoogle Scholar
  32. 32.
    Chamorro E, Duque-Noreña M, Pérez P (2009) J Mol Struct THEOCHEM 896:73–79CrossRefGoogle Scholar
  33. 33.
    Van Klink GP, de Boer HJ, Schat G, Akkerman OS, Bickelhaupt F, Spek AL (2002) Organometallics 21:2119–2135CrossRefGoogle Scholar
  34. 34.
    Sattler JJ, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Chem Rev 114:10613–10653CrossRefGoogle Scholar
  35. 35.
    Murray RE, Walter EL, Doll KM (2014) ACS Catal 4:3517–3520CrossRefGoogle Scholar
  36. 36.
    Le Saux T, Plasson R, Jullien L (2014) Chem Commun 50:6189–6195CrossRefGoogle Scholar
  37. 37.
    Schlesener C, Amatore C, Kochi J (1984) J Am Chem Soc 106:3567–3577CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Analytical BioGeoChemistryHelmholtz Zentrum MünchenMunichGermany
  2. 2.Analytical Food ChemistryTechnische Universität MünchenMunichGermany

Personalised recommendations