Advertisement

An extension of the Marcus equation: the Marcus potential energy function

  • Soledad Gutiérrez-Oliva
  • Bárbara Herrera
  • Alejandro Toro-Labbé
Original Paper
  • 186 Downloads
Part of the following topical collections:
  1. P. Politzer 80th Birthday Festschrift

Abstract

An analytic potential function consistent with the Marcus equation for activation energy is formulated and used to reveal new insights into the activation process in chemical reactions. As for the Marcus equation, the new potential function depends only on two parameters, the reaction energy and the activation energy (or the so-called Marcus intrinsic activation energy). Combination of the Marcus potential with the reaction force analysis provides two-parameter analytic expressions for the reaction force, reaction force constant, and reaction works. Moreover, since the parameters necessary to define the Marcus potential energy function can be obtained experimentally, the present model may produce experimental analytic potentials allowing for new and interesting applications, thus emerging as a powerful tool to characterize activation processes in chemical reactions.

Keywords

Marcus equation Marcus potential energy Reaction force Reaction works Activation energy 

Notes

Acknowledgements

The authors wish to acknowledge the financial support from FONDECYT Grants No. 1141098 and 1170837. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement N 609305.

References

  1. 1.
    Fukui K (1981) Acc Chem Res 14:363–368CrossRefGoogle Scholar
  2. 2.
    Hratchian HP, B SH (2004) J Chem Phys 120:9918–9924CrossRefGoogle Scholar
  3. 3.
    Hratchian HP, B SH (2005) J Chem Theory Comput 1:61–69CrossRefGoogle Scholar
  4. 4.
    Brönsted JN (1928) Chem Rev 5:231–338CrossRefGoogle Scholar
  5. 5.
    Evans MG, Polanyi M (1938) Trans Faraday Soc 34:11CrossRefGoogle Scholar
  6. 6.
    Hammond GS (1955) J Am Chem Soc 77:334–338CrossRefGoogle Scholar
  7. 7.
    Marcus RA (1964) Annu Rev Phys Chem 15:155–196CrossRefGoogle Scholar
  8. 8.
    Marcus RA (1993) Rev Mod Phys 65:599–610CrossRefGoogle Scholar
  9. 9.
    Pross A (1995) Theoretical and physical principles of organic reactivity. Wiley, New YorkGoogle Scholar
  10. 10.
    Cárdenas-Jirón G, Toro-Labbé A, Bock CW, Maruani J (1995) In: Smeyers Y (ed) Structure and dynamics of non-rigid molecular systems. Kluwer Academic Publishers, Amsterdam, pp 97–120Google Scholar
  11. 11.
    Martínez J, Toro-Labbé A (2004) Chem Phys Lett 392:132–139CrossRefGoogle Scholar
  12. 12.
    Toro-Labbé A (1999) J Phys Chem A 103:4398–4403CrossRefGoogle Scholar
  13. 13.
    Herrera B, Toro-Labbé A (2004) J Chem Phys 121:7096–7102CrossRefGoogle Scholar
  14. 14.
    Gutiérrez-Oliva S, Herrera B, Toro-Labbé A, Chermette H (2005) J Phys Chem A 109:1748–1751CrossRefGoogle Scholar
  15. 15.
    Politzer P, Toro-Labbé A, Gutiérrez-Oliva S, Herrera B, Jaque P, Concha MC, Murray JS (2005) J Chem Sci 117:467–472CrossRefGoogle Scholar
  16. 16.
    Rincón E, Jaque P, Toro-Labbé A (2006) J Phys Chem A 110:9478–9485CrossRefGoogle Scholar
  17. 17.
    Toro-Labbé A, Gutiérrez-Oliva S, Murray JS, Politzer P (2009) J Mol Model 15:707–710CrossRefGoogle Scholar
  18. 18.
    Politzer P, Murray JS, Yepes D, Jaque P (2014) J Mol Model 20:1–6Google Scholar
  19. 19.
    Ortega DE, Gutiérrez-Oliva S, Tantillo DJ, Toro-Labbé A (2015) Phys Chem Chem Phys 17:9771–9779CrossRefGoogle Scholar
  20. 20.
    Jaque P, Toro-Labbé A, Politzer P, Geerlings P (2008) Chem Phys Lett 456:135–140CrossRefGoogle Scholar
  21. 21.
    Yepes D, Murray JS, Santos JC, Toro-Labbé A, Politzer P, Jaque P (2013) J Mol Model 19:2689–2697CrossRefGoogle Scholar
  22. 22.
    Solà M, Toro-Labbé A (1999) J Phys Chem A 103:8847–8852CrossRefGoogle Scholar
  23. 23.
    Herrera B, Toro-Labbé A (2007) J Phys Chem A 111:5921–5926CrossRefGoogle Scholar
  24. 24.
    Cerón ML, Herrera B, Araya P, Gracia F, Toro-Labbé A (2011) J Mol Model 17:1625–1633CrossRefGoogle Scholar
  25. 25.
    Ortega DE, Nguyen QNN, Tantillo DJ, Toro-Labbé A (2016) J Comput Chem 37:1068–1081CrossRefGoogle Scholar
  26. 26.
    Flores-Morales P, Gutiérrez-Oliva S, Silva E, Toro-Labbé A (2009) Mol Phys 107:1587–1596CrossRefGoogle Scholar
  27. 27.
    Politzer P, Toro-Labbé A, Gutiérrez-Oliva S, Murray JS (2012) Adv Quantum Chem 64:189–209CrossRefGoogle Scholar
  28. 28.
    Polanyi JC, Zewail AH (1995) Acc Chem Res 28:119–132CrossRefGoogle Scholar
  29. 29.
    Zewail AH (2000) J Phys Chem A 104:5660–5694CrossRefGoogle Scholar
  30. 30.
    Ortega-Moo C, Durán R, Herrera B, Gutiérrez-Oliva S, Toro-Labbé A, Vargas R (2017) Phys Chem Chem Phys 19:14512–14519CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratorio de Química Teórica Computacional (QTC), Facultad de QuímicaPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations