Skip to main content
Log in

Adsorption and dissociation of sulfur-based toxic gas molecules on silicene nanoribbons: a quest for high-performance gas sensors and catalysts

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The adsorption behavior of sulfur-based toxic gases (H2S and SO2) on armchair silicene nanoribbons (ASiNRs) was investigated using first-principles density functional theory (DFT). Being a zero band gap material, application of bulk silicene is limited in nanoelectronics, despite its high carrier mobility. By restricting its dimensions into one dimension, construction of nanoribbons, and by introduction of a defect, its band gap can be tuned. Pristine armchair silicene nanoribbons (P-ASiNRs) have a very low sensitivity to gas molecules. Therefore, a defect was introduced by removal of one Si atom, leading to increased sensitivity. To deeply understand the impact of the aforementioned gases on silicene nanoribbons, electronic band structures, density of states, charge transfers, adsorption energies, electron densities, current-voltage characteristics and most stable adsorption configurations were calculated. H2S is dissociated completely into HS and H species when adsorbed onto defective armchair silicene nanoribbons (D-ASiNRs). Thus, D-ASiNR is a likely catalyst for dissociation of the H2S gas molecule. Conversely, upon SO2 adsorption, P-ASiNR acts as a suitable sensor, whereas D-ASiNR provides enhanced sensitivity compared with P-ASiNR. On the basis of these results, D-ASiNR can be expected to be a disposable sensor for SO2 detection as well as a catalyst for H2S reduction.

Comparison of I-V characteristics of pristine and defective armchair silicene nanoribbons with H2S and SO2 adsorbed on them

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tsai W-F, Huang C-Y, Chang T-R, Lin H, Jeng H-T, Bansil A (2013) Nat Commun 4:1500

    Article  Google Scholar 

  2. Ni Z, Zhong H, Jiang X, Quhe R, Luo G, Wang Y, Ye M, Yang J, Shi J, Lu J (2014) Nano 6:7609

    CAS  Google Scholar 

  3. Xu C, Luo G, Liu Q, Zheng J, Zhang Z, Nagase S, Gao Z, Lu J (2012) Nano 4:3111

    CAS  Google Scholar 

  4. Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D, Lu J (2012) Nano Lett 12:113

    Article  CAS  Google Scholar 

  5. Liu H, Gao J, Zhao J (2013) J Phys Chem C 117:10353

    Article  CAS  Google Scholar 

  6. Jose D, Datta A (2011) Phys Chem Chem Phys 13:7304

    Article  CAS  Google Scholar 

  7. Hussain T, Chakraborty S, Ahuja R (2013) Chem Phys Chem 14:3463

    Article  CAS  Google Scholar 

  8. Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D (2015) Nat Nanotechnol 10:227

    Article  CAS  Google Scholar 

  9. Amorim RG, Scheicher RH (2015) Nanotechnology 26:154002

    Article  Google Scholar 

  10. Sadeghi H, Bailey S, Lambert CJ (2014) Appl Phys Lett 104:103104

    Article  Google Scholar 

  11. Takeda K, Shiraishi K (1994) Phys Rev B 50:14916

    Article  CAS  Google Scholar 

  12. Guzmán-Verri GG, Voon LLY (2007) Phys Rev B 76:075131

    Article  Google Scholar 

  13. Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Resta A, Ealet B, Le Lay G (2012) Phys Rev Lett 108:155501

    Article  Google Scholar 

  14. Tchalala MR, Enriquez H, Mayne AJ, Kara A, Roth S, Silly MG, Bendounan A, Sirotti F, Greber T, Aufray B, Dujardin G, Ali MA, Oughaddou H (2013) Appl Phys Lett 102:083107

    Article  Google Scholar 

  15. Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K (2012) Nano Lett 12:3507–3511

    Article  CAS  Google Scholar 

  16. Chen L, Feng B, Wu K (2013) Appl Phys Lett 102:081602

    Article  Google Scholar 

  17. Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer WA et al (2013) Nano Lett 13:685–690

    Article  CAS  Google Scholar 

  18. Aizawa T, Suehara S, Otani S (2014) J Phys Chem C 118:23049–23057

    Article  CAS  Google Scholar 

  19. Mannix J, Kiraly B, Fisher BL, Hersam MC, Guisinger NP (2014) ACS Nano 8:7538–7547

    Article  CAS  Google Scholar 

  20. Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y (2012) Phys Rev Lett 108:245501

    Article  Google Scholar 

  21. Gao N, Zheng WT, Jiang Q (2012) Phys Chem Chem Phys 14:257–261

    Article  CAS  Google Scholar 

  22. Lopez-Bezanilla A (2014) J Phys Chem C 118:18788–18792

    Article  CAS  Google Scholar 

  23. Gao N, Li J, Jiang Q (2014) Chem Phys Lett 592:222–226

    Article  CAS  Google Scholar 

  24. Pan F, Wang Y, Jiang K, Ni Z, Ma J, Zheng J, Quhe R, Shi J, Yang J, Chen C, Lu J (2015) Sci Rep 5:9075

    Article  CAS  Google Scholar 

  25. Aghaei SM, Monshi MM, Torres I, Calizo I (2016) RSC Adv 6:17046

    Article  CAS  Google Scholar 

  26. Aghaei SM, Calizo I (2015) J Appl Phys 118:104304

    Article  Google Scholar 

  27. Aghaei SM, Calizo I (2015) In: Proceedings of IEEE SoutheastCon (SECon-2015), Fort Lauderdale, 9–12 April 2015, pp 1–6

  28. Sahin H, Peeters FM (2013) Phys Rev B 87:085423

    Article  Google Scholar 

  29. Du Y, Xu X (2016) Silicene. In: Spencer MJS, Morishita T (eds) Springer Series in Materials Science, vol 235. Springer, Basel, pp 215–242

  30. Friedlein R, Fleurence A, Sadowski JT (2013) Appl Phys Lett 102:221603

    Article  Google Scholar 

  31. Walia GK, Randhawa DKK (2018) Struct Chem 29:257. https://doi.org/10.1007/s11224-017-1025-9

    Article  CAS  Google Scholar 

  32. Walia GK, Randhawa DKK (2018) Surf Sci 670:33. https://doi.org/10.1016/j.susc.2017.12.013

    Article  CAS  Google Scholar 

  33. Sivek J, Sahin H, Partoens B, Peeters FM (2013) Phys Rev B 87:085444

    Article  Google Scholar 

  34. Gao N, Zheng WT, Jiang Q (2012) Phys Chem Chem Phys 14:257

    Article  CAS  Google Scholar 

  35. Hohenberg P, Kohn W (1964) Phys Rev 155:864

    Article  Google Scholar 

  36. Kohn W, Sham L (1965) Phys Rev 385:1133

    Article  Google Scholar 

  37. QuantumWise. Copenhagen, Denmark: Atomistix Toolkit version 2015.0. Available from: http://www.quantumwise.com

  38. Perdew JP, Zunger A (1981) Phys Rev B 23:5048

    Article  CAS  Google Scholar 

  39. Yamacli S (2014) J Nanopart Res 16:2576

    Article  Google Scholar 

  40. Srivastava P, Jaiswal NK, Sharma V (2014) Superlattice Microst 73:350

    Article  CAS  Google Scholar 

  41. Zhang Y-H, Chen Y-B, Zhou K-G, Liu C-H, Zeng J, Zhang H-L, Peng Y (2009) Nanotechnology 20:185504

    Article  Google Scholar 

  42. Abadir GB, Walus K, Pulfrey DL (2009) J Comput Electron 8:1

    Article  CAS  Google Scholar 

  43. Aghaei SM, Monshi MM, Calizo I (2016) RSC Adv 6:94417

    Article  CAS  Google Scholar 

  44. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  45. Feng J-W, Liu Y-J, Wang H-X, Zhao J-X, Cai Q-H, Wang X-Z (2014) Comput Mater Sci 87:218

    Article  CAS  Google Scholar 

  46. Osborn TH, Farajian AA (2014) Nano Res 7:945

    Article  CAS  Google Scholar 

  47. Li SS (2012) Semiconductor physical electronics. Springer, Berlin

Download references

Acknowledgments

The authors would like to thank Quantumwise for their valuable support. Walia GK would like to acknowledge University Grants Commission, New Delhi, India, for Senior Research Fellowship.

Funding

This work was supported by Department of Science and Technology (DST) of India Promotion of University Research and Scientific Excellence (PURSE) scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurleen Kaur Walia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walia, G.K., Randhawa, D.K.K. Adsorption and dissociation of sulfur-based toxic gas molecules on silicene nanoribbons: a quest for high-performance gas sensors and catalysts. J Mol Model 24, 94 (2018). https://doi.org/10.1007/s00894-018-3631-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3631-x

Keywords

Navigation