Ab initio study of polar and non-polar aprotic solvents effects on some 3-hydroxychromones and 3-hydroxyquinolones derivatives

  • Gérard A. Ndongo
  • Marthe O. Boyomo
  • Pierre A. Owono
Original Paper


The photophysical properties of some 3-hydroxychromones (3-HC) and 3-hydroxyquinolones (3-HQ) derivatives are investigated in polar and non-polar aprotic solvents using the TDDFT method and the PCM formalism. In acetonitrile and n-hexane, 2–(2-benzothienyl)-3-HC) (BTHC), 2-furyl-3-HQ (FHQ), and 1-methyl-2-furyl-3-HQ (MFHQ) have exhibited dual emission bands due to the excited state intramolecular proton transfer (ESIPT) reaction, leading to a single excited tautomer form. Our results indicate a very high BTHC light absorption efficiency and radiative rate constant. A charge transfer (CT) analysis suggests that the chromone moiety acts as an acceptor group while quinolone moiety acts as an electron donor. In addition, in non-polar n-hexane the furyl group may act as an acceptor, while in polar acetonitrile it may act as an electron donor. The energies of the upper and lower states of the normal form fluorescence have been decreased by the introduction of ortho-methyl group in FHQ. In all states, MFHQ exhibits large distortions of the dihedral angle between the chromone moiety and the furan group in para position. The ESIPT reaction is irreversible for the three derivatives in all cases studied in this work. Since experimental data with n-hexane are not available, results concerning this solvent are only predictions.


Polar Non-polar Aprotic Solvent 3-hydroxychromone 3-hydroxyquinolone 



This work was supported by LABORATOIRE D’OPTIQUE ET APPLICATIONS of CEPAMOQ. All our thanks to Université de Strasbourg for access to its facilities.


  1. 1.
    Yushchenko D, Bilokin M, Pyvovarenko O, Duportail G, Mély Y, Pivovarenko V (2006) Synthesis and fluorescence properties of 2-aryl-3-hydroxyquinolones, a new class of dyes displaying dual fluorescence. Tetrahedron Lett 47:905–908CrossRefGoogle Scholar
  2. 2.
    McMorrow D, Kasha M (1984) Intramolecular excited-state proton transfer in 3-hydroxyflavone. Hydrogen-bonding solvent perturbations. J Phys Chem 88:2235CrossRefGoogle Scholar
  3. 3.
    Roshal DA, Organero AJ, Douhal A (2003) Tuning the mechanism of proton-transfer in a hydroxyflavone derivative. Chem Phys Lett 379:53–59CrossRefGoogle Scholar
  4. 4.
    Klymchenko SA, Demchenko PA (2003) Multiparametric probing of intermolecular interactions with fluorescent dye exhibiting excited state intramolecular proton transfer. Phys Chem Chem Phys 5:461–468CrossRefGoogle Scholar
  5. 5.
    Shvadchak VV, Klymchenko SA, de Rocquigny H, Mely Y (2009) Sensing peptide –oligonucleotide interactions by a two-color fluorescence label: application to the HIV-1 nucleocapsid protein. Nucleic Acids Res 37:1–12CrossRefGoogle Scholar
  6. 6.
    Sytnik A, Gormin D, Kasha M (1994) Interplay between excited-state intramolecular proton transfer and charge transfer in flavonols and their use as protein-binding-site fluorescence probes. Proc Natl Acad Sci U S A 91:11968–11972CrossRefGoogle Scholar
  7. 7.
    Postupalenko YV, Shvadchak VV, Duportail G, Pivovarenko GV, Klymchenko SA, Mely Y (2011) Monitoring membrane binding and insertion of peptides by two-color fluorescent label. Biochim Biophys Acta Biomembr 1808:424–432CrossRefGoogle Scholar
  8. 8.
    Yushchenko DA, Shvadchak VV, Klymchenko AS, Duportail G, Mély Y, Pivovarenko VG (2006) 2-Aryl-3-hydroxyquinolones, a new class of dyes with solvent dependent dual emission due to excited state intramolecular proton transfer. New J Chem 30:774–781CrossRefGoogle Scholar
  9. 9.
    Woolfe JG, Thistlethwaite JP (1981) Direct observation of excited state intramolecular proton transfer kinetics in 3-hydroxyflavone. J Am Chem Soc 103:6916–6923CrossRefGoogle Scholar
  10. 10.
    Itoh M, Tokumuna K, Tanimoto Y, Okada Y, Takeuchi H, Obi K, Tanaka I (1982) Time-resolved and steady-state fluorescence studies of the excited-state proton transfer in 3-hydroxyflavone and 3-hydroxychromone. J Am Chem Soc 104:4146–4150CrossRefGoogle Scholar
  11. 11.
    Ormson S, Brown R (1994) Excited state intramolecular proton transfer part 2: Esipt to oxygen. Prog React Kinet 19:211–275Google Scholar
  12. 12.
    Das R, Klymchenko SA, Duportail G, Mély Y (2009) Unusually slow proton transfer dynamics of a 3-hydroxychromone dye in protic solvents. Photochem Photobiol Sci 8:1583–1589CrossRefGoogle Scholar
  13. 13.
    Shynkar VV, Klymchenko SA, Piémont E, Demchenko PA, Mély Y (2004) Dynamics of intermolecular hydrogen bonds in the excited states of 4′-Dialkylamino-3-hydroxyflavones. On the pathway to an ideal fluorescent hydrogen bonding sensor. J Phys Chem A 108:8151–9159CrossRefGoogle Scholar
  14. 14.
    Kenfack AC, Klymchenko SA, Duportail G, Burger A, Mély Y (2012) Ab initio study of the solvent H-bonding effect on ESIPT reaction and electronic transitions of 3-hydroxychromone derivatives. Phys Chem Chem Phys 14:8910–8919CrossRefGoogle Scholar
  15. 15.
    Klymchenko SA, Kenfack C, Duportail G, Mély Y (2007) Effects of polar protic solvents on dual emissions of 3-hydroxychromones. J Chem Sci 119:83–89CrossRefGoogle Scholar
  16. 16.
    Klymchenko SA, Pivovarenko GV, Oztürk T, Demchenko PA (2003) Modulation of the solvent-dependent dual emission in 3-hydroxychromones by substituents. New J Chem 27:1336CrossRefGoogle Scholar
  17. 17.
    Klymchenko SA, Pivovarenko GV, Demchenko PA (2003) Perturbation of planarity as the possible mechanism of solvent-dependent variations of fluorescence quantum yield in 2-aryl-3-hydroxychromones Spectrochim. Acta A Mol Biomol Spectrosc 59:787–792Google Scholar
  18. 18.
    Yushchenko AD, Shvadchak VV, Klymchenko SA, Duportail G, Pivovarenko GV, Mély YA (2007) Steric control of the excited –state intramolecular proton transfer in 3-Hydroxyquinolones: steady-state and time –resolved fluorescence study. J Phys Chem 111:8986–8992CrossRefGoogle Scholar
  19. 19.
    Klymchenko SA, Shvadchak VV, Yushchenko AD, Jain N, Mély YB (2008) Excited-state intramolecular proton transfer distinguishes microenvironments in single and double-stranded DNA. J Phys Chem 112:12050–12055CrossRefGoogle Scholar
  20. 20.
    Ahlrichs R, Taylor P (1981) The choice of gaussian basis sets for molecular electronic structure calculations. J Chim Phys 78:315–324CrossRefGoogle Scholar
  21. 21.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170CrossRefGoogle Scholar
  22. 22.
    Jacquemin D, Perpète EA, Scuseria GE, Ciofini I, Adamo C (2008) TD-DFT performance for the visible absorption spectra of organic dyes: conventional versus long-range hybrids. J Chem Theory Comput 4:123–135CrossRefGoogle Scholar
  23. 23.
    Mennucci B, Tomasi J, Cammi R, Cheeseman JR, Frisch MJ, Devlin FJ, Gabriel S, Stephens PJ (2002) Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules. J Phys Chem A 106:6102CrossRefGoogle Scholar
  24. 24.
    York DM, Karplus M (1999) Smooth solvation potential based on the conductor-like screening model. J Phys Chem A 103:11060–11079CrossRefGoogle Scholar
  25. 25.
    Jensen F (2003) Introduction to computational chemistry. Wiley, ChichesterGoogle Scholar
  26. 26.
    Ho JM, Coote ML (2010) A universal approach for continuum solvent pK(a) calculations: are we there yet? Theor Chem Accounts 125:3–21CrossRefGoogle Scholar
  27. 27.
    Parthenopoulos AD, Kasha M (1990) Ground state anion formation and picosecond excitation dynamics of 3-hydroxyflavone in formamide. Chem Phys Lett 173:303–309CrossRefGoogle Scholar
  28. 28.
    Chou P-T, Pu S-C, Cheng Y-M, Yu W-S, Yu Y-C, Hung F-T, Hu W-P (2005) Femtosecond dynamics on excited-state proton/charge-transfer reaction in 4'-N,N-diethylamino-3-hydroxyflavone. The role of dipolar vectors in constructing a rational mechanism. J Phys Chem A 109:3777–3787CrossRefGoogle Scholar
  29. 29.
    Mandal KP, Samanta A (2003) Evidence of ground-state proton-transfer reaction of 3-Hydroxyflavone in neutral alcoholic solvents. J Phys Chem A 107:6334–6339CrossRefGoogle Scholar
  30. 30.
    Klymchenko SA, Demchenko PA (2004) 3-Hydroxychromone dyes exhibiting excited-state intramolecular proton transfer in water with efficient two-band fluorescence. New J Chem 28:687–692CrossRefGoogle Scholar
  31. 31.
    Sengupta KP, Kasha M (1979) Excited state proton-transfer spectroscopy of 3-hydroxyflavone and quercetin. Chem Phys Lett 68:382–385CrossRefGoogle Scholar
  32. 32.
    Casadesus R, Vendrell O, Moreno M, Lluch MJ, Morokuma K (2006) On the intramolecular proton transfer of 3-hydroxyflavone in the first singlet excited state: a theore-tical study. Chem Phys 325:243–250CrossRefGoogle Scholar
  33. 33.
    Hang Y, Hui L, Guomin X, Chengyan R, Ying S, Hongming W, Jin M, Dajun D (2016) A novel non-fluorescent excited state intramolecular proton transfer phenomenon induced by intramolecular hydrogen bonds: an experimental and theoretical investigation. Scr Theol 6:19774Google Scholar
  34. 34.
    Shvadchak, V. V (2009) Sondes fluorescentes à émission duale pour la caractérisation d’interactions impliquant des protéines: Application aux protéines rétrovirales. PhD thesis, University of StrasbourgGoogle Scholar
  35. 35.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. University of Maryland, Baltimore, pp 205–235CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Gérard A. Ndongo
    • 1
    • 2
  • Marthe O. Boyomo
    • 2
    • 3
  • Pierre A. Owono
    • 2
  1. 1.Université de Maroua, Faculté des sciences, Département de PhysiqueMarouaCameroun
  2. 2.Laboratoire de Physique Nucléaire atomique moléculaire et biophysique, Université de Yaoundé IYaoundéCameroun
  3. 3.Ecole Nationale Supérieure Polytechnique, Département de Mathématiques et Sciences Physiques, Université de Yaoundé IYaoundéCameroun

Personalised recommendations