Skip to main content
Log in

The effect of Stone-Wales defects and roughness degree on the lubricity of graphene on gold surfaces

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this study, the lubricity of perfect and defective graphene on the gold substrate (Au (111)) has been investigated by using molecular dynamics simulations. The influence of surface morphology as well as the Stone-Wales (SW) defects concentration on the friction of graphene on the gold surface is explored. The SW defects in the range of 0–2.55% are randomly distributed into the graphene. Furthermore, the self-affine fractal method is employed to generate realistic rough surfaces. The effect of the external force, F E , in the range of 0.25−1.0 nN, on the drag coefficients is also investigated. It is shown that the friction force slightly depends on the sliding velocity for all systems. We show that by increasing the defect concentration, the lubricity of graphene nano-sheet slightly decreases. Moreover, it is shown that the friction is almost insensitive to the roughness degree, within the range studied. Both of these effects can be rationalized through variations in the real atomic contact area.

By increasing the SW defect concentration of the graphene, the shape of the deformation is different from a sine wave profile, the real contact area, and the friction increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Buckley DH, Brainard WA (1975) Friction and wear of metals in contact with pyrolytic graphite. Carbon 13:501–508

    Article  CAS  Google Scholar 

  2. Ruan JA (1994) Frictional behavior of highly oriented pyrolytic graphite. J Appl Phys 76:8117–8120

    Article  CAS  Google Scholar 

  3. Dienwiebel M, Verhoeven GS, Pradeep N, Frenken JWM, Heimberg JA, Zandbergen HM (2004) Superlubricity of graphite. Phys Rev Lett 92:126101

    Article  Google Scholar 

  4. Kwon S, Ko JH, Jeon KJ, Kim YH, Park JY (2012) Enhanced nanoscale friction on fluorinated graphene. Nano Lett 12:6043–6048

    Article  CAS  Google Scholar 

  5. Ye Z, Tang C, Dong Y, Martini A (2012) Role of wrinkle height in friction variation with number of graphene layers. J Appl Phys 112:116102

    Article  Google Scholar 

  6. Filleter T, McChesney JL, Bostwick A, Rotenberg E, Emtsev KV, Seyller T, Horn K, Bennewitz R (2009) Friction and dissipation in epitaxial graphene films. Phys Rev Lett 102:086102

    Article  CAS  Google Scholar 

  7. Deng Z, Klimov NN, Solares SD, Li T, Xu H, Cannara RJ (2012) Nanoscale interfacial friction and adhesion on supported versus suspended monolayer and multilayer graphene. Langmuir 29:235–243

    Article  Google Scholar 

  8. Xu L, Ma TB, Hu YZ, Wang H (2011) Vanishing stick–slip friction in few-layer graphenes: the thickness effect. Nanotechnology 22:285708

    Article  Google Scholar 

  9. Berman D, Erdemir A, Sumant AV (2014) Graphene: a new emerging lubricant. Mater Today 17:31–42

    Article  CAS  Google Scholar 

  10. Berman D, Erdemir A, Sumant AV (2013) Few layer graphene to reduce wear and friction on sliding steel surfaces. Carbon 54:454–459

    Article  CAS  Google Scholar 

  11. Berman D, Erdemir A, Sumant AV (2013) Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen. Carbon 59:167–175

    Article  CAS  Google Scholar 

  12. Berman D, Deshmukh SA, Sankaranarayanan SKRS, Erdemir A, Sumant AV (2015) Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348:1118

    Article  CAS  Google Scholar 

  13. Liu Z, Yang J, Grey F, Liu JZ, Liu Y, Wang Y, Yang Y, Cheng Y, Zheng Q (2012) Observation of microscale superlubricity in graphite. Phys Rev Lett 108:205503

    Article  Google Scholar 

  14. Lodge MS, Tang C, Blue BT, Hubbard WA, Martini A, Dawson BD, Ishigami M (2016) Lubricity of gold nanocrystals on graphene measured using quartz crystal microbalance. Sci Rep 6:31837

    Article  CAS  Google Scholar 

  15. Dong Y, Wu X, Martini A (2013) Atomic roughness enhanced friction on hydrogenated graphene. Nanotechnology 24:375701

    Article  Google Scholar 

  16. Ko JH, Kwon S, Byun IS, Choi JS, Park BH, Kim YH, Park JY (2013) Nanotribological properties of fluorinated, hydrogenated, and oxidized graphenes. Tribol Lett 50:137–144

    Article  CAS  Google Scholar 

  17. Smolyanitsky A, Killgore JP, Tewary VK (2012) Effect of elastic deformation on frictional properties of few-layer graphene. Phys Rev B 85:035412

    Article  Google Scholar 

  18. Liu P, Zhang YW (2011) A theoretical analysis of frictional and defect characteristics of graphene probed by a capped single-walled carbon nanotube. Carbon 49:3687–3697

    Article  CAS  Google Scholar 

  19. Smolyanitsky A, Killgore JP (2012) Anomalous friction in suspended graphene. Phys Rev B 86:125432

    Article  Google Scholar 

  20. Khomenko AV, Prodanov NV, Persson BNJ (2013) Atomistic modelling of friction of cu and au nanoparticles adsorbed on graphene. Cond Matt Phys 16:33401

    Article  Google Scholar 

  21. Ye Z, Egberts P, Han GH, Johnson ATC, Carpick RW, Martini A (2016) Load-dependent friction hysteresis on Graphene. ACS Nano 10:5161–5168

    Article  CAS  Google Scholar 

  22. Zhang Q, Diao D, Kubo M (2015) Nanoscratching of multi-layer graphene by molecular dynamics simulations. Tribol Int 88:85–88

    Article  CAS  Google Scholar 

  23. Dietzel D, Feldmann M, Schwarz UD, Fuchs H, Schirmeisen A (2013) Scaling Laws of structural lubricity. Phys Rev Lett 111:235502

    Article  Google Scholar 

  24. Cihan E, Ipek SI, Durgun E, Baykara MZ (2016) Structural lubricity under ambient conditions. Nat Commun 7:12055

    Article  CAS  Google Scholar 

  25. Ye Z, Balkanci A, Martini A, Baykara MZ (2017) Effect of roughness on the layer-dependent friction of few-layer graphene. Phys Rev B 96:6

    Google Scholar 

  26. Kawai S, Benassi A, Gnecco E, Söde H, Pawlak R, Feng X, Müllen K, Passerone D, Pignedoli CA, Ruffieux P, Fasel R, Meyer E (2016) Superlubricity of graphene nanoribbons on gold surfaces. Science 351:957–961

    Article  CAS  Google Scholar 

  27. Xiao JR, Staniszewski J, Jr JWG (2009) Fracture and progressive failure of defective graphene sheets and carbon nanotubes. Compos Struct 88:602–609

    Article  Google Scholar 

  28. Fan BB, Yang XB, Zhang R (2010) Anisotropic mechanical properties and stone–Wales defects in graphene monolayer: a theoretical study. Phys Lett A 374:2781–2784

    Article  CAS  Google Scholar 

  29. Xiaoa JR, Staniszewskia J, Gillespie JW Jr (2010) Tensile behaviors of graphene sheets and carbon nanotubes with multiple stone–Wales defects. Mater Sci Eng A 527:715–723

  30. Lherbier A, Dubois SMM, Declerck X, Roche S (2011) Two-dimensional Graphene with structural defects: elastic mean free path, minimum conductivity, and Anderson transition. Phys Rev Lett 106:046803

    Article  Google Scholar 

  31. Ansari R, Ajori S, Motevalli B (2012) Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation. Superlattice Microst 51:274–289

    Article  CAS  Google Scholar 

  32. Jing N, Xue Q, Ling C, Shan M, Zhang T, Zhoub X, Jiao Z (2012) Effect of defects on Young’s modulus of graphene sheets: a molecular dynamics simulation. RSC Adv 2:9124–9129

    Article  CAS  Google Scholar 

  33. Neek-Amal M, Peeters FM (2012) Effect of grain boundary on the buckling of graphene nanoribbons. Appl. Phys Lett 100:101905

    Article  Google Scholar 

  34. Baimova JA, Bo L, Dmitriev SV, Zhou K, Nazarov AA (2013) Effect of stone-thrower-Wales defect on structural stability of graphene at zero and finite temperatures. EPL103:46001

  35. Lehmann T, Ryndyk DA, Cuniberti G (2013) Combined effect of strain and defects on the conductance of graphene nanoribbons. Phys Rev B 88:125420

    Article  Google Scholar 

  36. Wang S-P, Guo J-G, Zhou L-J (2013) Influence of stone–Wales defects on elastic properties of graphene nanofilms. Phys E 48:29–35

    Article  CAS  Google Scholar 

  37. Kotakoski J, Eder FR, Meyer JC (2014) Atomic structure and energetics of large vacancies in graphene. Phys Rev B 89:201406(R)

    Article  Google Scholar 

  38. Partovi-Azar P, Jand SP, Namiranian A, Rafii-Tabar H (2013) Electronic features induced by stone-Wales defects in zigzag and chiral carbon nanotubes. Comput Mater Sci 29:82–86

    Article  Google Scholar 

  39. Sun YJ, Ma F, Ma DY, Xu KW, Chu PK (2012) Stress-induced annihilation of stone–Wales defects in graphene nanoribbons. J Phys D Appl Phys 45:305303

    Article  Google Scholar 

  40. Rodrigues JNB, PAD G, NFG R, Ribeiro RM, JMBLd S, NMR P (2011) Zigzag graphene nanoribbon edge reconstruction with stone-Wales defects. Phys Rev B 84:155435

    Article  Google Scholar 

  41. Lusk MT, Wu DT, Carr LD (2010) Graphene Nanoengineering and the inverse-stone-thrower-Wales defect. Phys Rev B 81:155444

    Article  Google Scholar 

  42. Ma J, Alfè D, Michaelides A, Wang E (2009) Stone-Wales defects in graphene and other planar sp2-bonded materials. Phys Rev B 80:033407

    Article  Google Scholar 

  43. Wang C, Y-h D (2013) Catalytically healing the stone–Wales defects in graphene by carbon adatoms. J Mater Chem A 1:1885–1891

    Article  CAS  Google Scholar 

  44. He L, Guo S, Lei J, Sha Z, Liu Z (2014) The effect of stone–thrower–Wales defects on mechanical properties of graphene sheets – a molecular dynamics study. Carbon 75:124–132

    Article  CAS  Google Scholar 

  45. Ebrahimi S (2015) Influence of stone–Wales defects orientations on stability of graphene nanoribbons under a uniaxial compression strain. Solid State Commun 220:17–20

    Article  CAS  Google Scholar 

  46. Ewen JP, Restrepo SE, Morgan N, Dini D (2017) Nonequilibrium molecular dynamics simulations of stearic acid adsorbed on iron surfaces with nanoscale roughness. Tribol Int 107:264–273

    Article  CAS  Google Scholar 

  47. Zheng X, Zhu HT, Tieu AK, Kosasih B (2014) Roughness and lubricant effect on 3D atomic asperity contact. Tribol Lett 53:215–223

    Article  Google Scholar 

  48. Spijker P, Anciaux G, Molinari JF (2011) Dry sliding contact between rough surfaces at the atomistic scale. Tribol Lett 44:279–285

    Article  CAS  Google Scholar 

  49. Friedrichs W, Ohler B, Langel W, Montiand S, Koppen S (2011) Adsorption of collagen Nanofibrils on rough TiO2:a molecular dynamics study. Adv Eng Mater 13:B334–B342

    Article  Google Scholar 

  50. Yang C, Tartaglino U, Persson BNJ (2006) A multiscale molecular dynamics approach to contact mechanics. Eur Phys J E 19:47–58

    Article  CAS  Google Scholar 

  51. Persson BNJ (2001) Theory of rubber friction and contact mechanics. J Chem Phys 115:3840–3861

    Article  CAS  Google Scholar 

  52. Makse H, Havlin S, Schwartz M, Stanley HE (1996) Method for generating long-range correlations for large systems. Phys Rev E 53:5445–5449

    Article  CAS  Google Scholar 

  53. Ebrahimi S, Ghafoori-Tabrizi K, Rafii-Tabar H (2013) Molecular dynamics simulation of the adhesive behavior of collagen on smooth and randomly rough TiO2 and Al2O3 surfaces. Comput Mater Sci 71:172–178

    Article  CAS  Google Scholar 

  54. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  55. Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472–6486

    Article  CAS  Google Scholar 

  56. Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the Fcc metals cu, Ag, au, Ni, Pd, Pt, and their alloys. Phys Rev B 33:7983–7991

    Article  CAS  Google Scholar 

  57. Guerra R, Tartaglino U, Vanossi A, Tosatti E (2010) Ballistic nanofriction. Nat. Mater. 9:634–637

    Article  CAS  Google Scholar 

  58. Pilmpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117:1–19

    Article  Google Scholar 

  59. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Article  CAS  Google Scholar 

  60. Allen MP, Tildesley DJ (1986) Computer simulation of liquids. Oxford University Press, New York

    Google Scholar 

  61. Krim J (1996) Atomic-scale origins of friction. Langmuir 12:4564–4566

    Article  CAS  Google Scholar 

  62. Bowden FP, Tabor D (1964) The friction and lubrication of solids. Oxford University Press, Oxford

    Google Scholar 

  63. Yifei M, Kevin TT, Szlufarska I (2009) Friction laws at the nanoscale. Nature 457:1116–1119

    Article  Google Scholar 

  64. Yifei M, Szlufarska I (2010) Roughness picture of friction in dry nanoscale contacts. Phys Rev B 81:035405

    Article  Google Scholar 

  65. Gnecco E, Meyer E (2007) Fundamentals of friction and wear on the Nanoscale. Springer, Berlin

    Book  Google Scholar 

  66. Ritter C, Heyde M, Stegemann B, Rademann K, Schwarz UD (2005) Contact-area dependence of frictional forces: moving adsorbed antimony nanoparticles. Phys Rev B 71:085405

    Article  Google Scholar 

  67. Dietzel D, Ritter C, Mönninghoff T, Fuchs H, Schirmeisen A, Schwarz UD (2008) Frictional duality observed during nanoparticle sliding. Phys Rev Lett 101:125505

    Article  Google Scholar 

  68. Dietzel D, Feldmann M, Herding C, Schwarz UD, Schirmeisen A (2010) Quantifying pathways and friction of nanoparticles during controlled manipulation by contact-mode atomic force microscopy. Tribol Lett 39:273–281

    Article  CAS  Google Scholar 

  69. Dietzel D, Mönninghoff T, Herding C, Feldmann M, Fuchs H, Stegemann B, Ritter C, Schwarz UD, Schirmeisen A (2010) Frictional duality of metallic nanoparticles: influence of particle morphology, orientation, and air exposure. Phys Rev B 82:035401

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadollah Ebrahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, S. The effect of Stone-Wales defects and roughness degree on the lubricity of graphene on gold surfaces. J Mol Model 24, 80 (2018). https://doi.org/10.1007/s00894-018-3621-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3621-z

Keywords

Navigation