Skip to main content
Log in

Effect of grain boundary complexions on the deformation behavior of Ni bicrystal during bending creep

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The dependence of creep deformation behavior of nickel bicrystal specimens on grain boundary (GB) complexion was investigated by performing a simulated bending creep test using molecular dynamics methods. Strain burst phenomena were observed during the low temperature [500 K, i.e., <0.3 * melting point of nickel (Tm)] bending creep process. Atomic strain and dislocation analyses showed that the time of occurrence of strain burst depends on how easily GB migration happens in bicrystal specimens. Specimens with kite monolayer segregation GB complexion were found to be stable at low temperature (500 K), whereas specimens with split-kite GB complexion were stable at a comparatively higher temperature (900 K). In case of further elevated creep temperatures, e.g., 1100 K and 1300 K, split-kite GB complexion becomes unstable and leads to early failure of the specimen at those temperatures. Additionally, it was observed that split-kite bilayer segregation and normal kite GB complexions exhibit localized increases in elastic modulus during bending creep process, occurring at temperatures of 1100 K and 1300 K, respectively, due to the formation of interpenetrating icosahedral clusters.

Representative creep curves during bending creep deformation of various grain boundary complexions at 900 K

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2a–d
Fig. 3a,b
Fig. 4a–d
Fig. 5
Fig. 6a–d
Fig. 7a–e
Fig. 8a–d
Fig. 9a–e
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tang M, Carter WC, Cannon RM (2006) J Mater Sci 41:7691–7695

    Article  CAS  Google Scholar 

  2. Cantwell PR, Tang M, Dillon SJ, Luo J, Rohrer GS, Harmer MP (2014) Acta Mater 62:1–48

    Article  CAS  Google Scholar 

  3. Dillon SJ, Tang M, Carter WC, Harmer MP (2007) Acta Mater 55:6208–6218

    Article  CAS  Google Scholar 

  4. Pan Z, Rupert TJ (2016) Phys Rev B 93(13):134113

    Article  Google Scholar 

  5. Luo J, Cheng H, Asl KM, Kiely CJ, Harmer MP (2011) Science 333:1730–1733

    Article  CAS  Google Scholar 

  6. Reddy KM, Guo JJ, Shinoda Y, Fujita T, Hirata A, Singh JP, Chen MW (2012) Nat. Commun 3:1052

    Article  Google Scholar 

  7. Khalajhedayati A, Rupert TJ (2015) JOM 67:2788–2801

    Article  CAS  Google Scholar 

  8. Jud E, Huwiler CB, Gauckler LJ (2005) J Am Ceram Soc 88:3013–3019

    Article  CAS  Google Scholar 

  9. Dillon SJ, Harmer MP (2008) J Am Ceram Soc 91:2304–2313

    Article  CAS  Google Scholar 

  10. Nie J, Chan JM, Qin M, Zhou N, Luo J (2017) Acta Mater 130:329–338

    Article  CAS  Google Scholar 

  11. Gupta VK, Yoon DH, Meyer HM, Luo J (2007) Acta Mater 55:3131–3142

    Article  CAS  Google Scholar 

  12. Frolov T (2014) Appl Phys Lett 104:211905

    Article  Google Scholar 

  13. Tewari A, Bowen P (2016) Curr Opin Solid State Mater Sci 20:278–285

    Article  CAS  Google Scholar 

  14. Frolov T, Olmsted DL, Asta M, Mishin Y (2013) Nat Commun 4:1899

    Article  Google Scholar 

  15. Su X, Garofalini SH (2004) J Mater Res 19:752–758

    Article  CAS  Google Scholar 

  16. Zhou N, Hu T, Huang J, Luo J (2016) Scr Mater 124:160–163

    Article  CAS  Google Scholar 

  17. Khalajhedayati A, Pan Z, Rupert TJ (2016) Nat Commun:7

  18. Straumal BB, Mazilkin AA, Baretzky B (2016) Curr Opin Solid State Mater Sci 20:247–256

  19. Reddy KV, Meraj M, Pal S (2017) Comput Mater Sci 136:36–43

  20. Plimpton S (1995) J Comput Phy 117(1):1–19

  21. Zhang L, Lu C, Tieu K (2014) Sci Rep 4:5919

  22. Frolov T, Asta M, Mishin Y (2015) Phys Rev B 92:020103

    Article  Google Scholar 

  23. Miyajima Y, Ueda T, Adachi H, Fujii T, Onaka S, Kato M (2014) In: IOP conference series: Mater Sci Eng 63:012138

  24. Wilson SR, Mendelev MI (2015) Philos Mag 95:224–241

  25. Evans DJ, Holian BL (1985) J Chem Phys 83:4069–4074

  26. Stukowski A (2009) Model Simul Mater Sci Eng 18:015012

  27. Faken D, Jónsson H (1994) Comput Mater Sci 2:279–286

  28. Kelchner CL, Plimpton SJ, Hamilton JC (1998) Phys Rev B 58:11085

    Article  CAS  Google Scholar 

  29. Stukowski A, Bulatov VV, Arsenlis A (2012) Model Simul Mater Sci Eng 20:085007

  30. Shimizu F, Ogata S, Li J (2007) Mater Trans 48:2923–2927

  31. Jing GY, Duan H, Sun XM, Zhang ZS, Xu J, Li YD, Yu DP (2006) Phys Rev B 73:235409

    Article  Google Scholar 

  32. Frolov T, Divinski SV, Asta M, Mishin Y (2013) Phys Rev Lett 110:255502

  33. Mishin Y, Farkas D, Mehl MJ, Papaconstantopoulos DA (1999) Phys Rev B 59(5):3393

    Article  CAS  Google Scholar 

  34. Mendelev MI, Kramer MJ, Hao SG, Ho KM, Wang CZ (2012) Philos Mag 92(35):4454–4469

  35. Sarkar A, Nagesha A, Parameswaran P, Sandhya R, Laha K (2016) Mater Sci Eng, A 660:213–224

    Article  CAS  Google Scholar 

  36. Shibkov AA, Gasanov MF, Zheltov MA, Zolotov AE, Ivolgin VI (2016) Int J Plast 86:37–55

  37. Hu T, Jiang L, Yang H, Ma K, Topping TD, Yee J, Lavernia EJ (2015) Acta Mater 94:46–58

  38. Bobylev SV, Gutkin MY, Ovid’ko IA (2004) Acta Mater 52:3793–3805

  39. Wilshire B, Owen DRJ (1982) Recent Advances in Creep and Fracture of Engineering Materials and Structures, Pineridge Press, 91 West Cross Lane, West Cross, Swansea, West Glamorgan U K, pp 353

  40. Rupert TJ (2016) Curr Opin Solid State Mater Sci 20:257–267

  41. Hatherly M, Malin AS (1984) Scr Metall 18(5) 449–454

  42. Zhang Q, Liu Y, Liu Y, Ren Y, Wu Y, Gao Z, Han P (2017) Mater Sci Eng. A 701:196–202

    CAS  Google Scholar 

  43. Lee M, Kim HK, Lee JC (2010) Met Mater Int 16:877–881

  44. Lee M, Lee CM, Lee KR, Ma E, Lee JC (2011) Acta Mater 59:159–170

  45. Wakeda M, Shibutani Y (2010) Acta Mater 58:3963–3969

  46. Singh V, Rama Rao P, Taplin DMR (1973) J Mater Sci 8:373–381

Download references

Acknowledgments

The authors would like to acknowledge the computer center of National Institute of Technology Rourkela for giving access to high-performance computing facility (HPCF) required for performing this molecular dynamics study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehanshu Pal.

Electronic supplementary material

ESM 1

(DOCX 1163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, K.V., Pal, S. Effect of grain boundary complexions on the deformation behavior of Ni bicrystal during bending creep. J Mol Model 24, 87 (2018). https://doi.org/10.1007/s00894-018-3616-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3616-9

Keywords

Navigation