Skip to main content
Log in

Ab initio scrutiny of endohedral C20 fullerenes implanted in between gold electrodes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Using the smallest non-classical fullerene, we investigate the impact of endohedral fullerene molecules on the quantum transport through molecular junctions, and then compared this with the pure C20-based molecular junction. By employing the density functional theory combined with the non-equilibrium Green’s function, we contemplated different electronic parameters, namely, density of states, transmission coefficient, energy levels, molecular orbitals, conduction gaps, electron density and their charge transfer. A knowledge of these physical parameters is necessary in order to calculate current and conductance computed using Landauer-Büttiker formalism. The molecule-electrode coupling influenced by endohedral molecules affects junction devices in a unique manner. We observe that the highest quantum transport is possible in an Au–N@C20–Au and Au–O@C20–Au junction device, and is even higher than that of the intrinsic C20 fullerene junction. Another notable observation is that the F@C20 molecule exhibits the least conducting nature, being even lower than that of the endohedral molecule formed by inserting the noble element, neon.

Electrical characteristics of Endohedral fullerene junctions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162

    Article  CAS  Google Scholar 

  2. Schmalz TG, Seitz WA, Klein DJ, Hite GE (1988) J Am Chem Soc 110:1113

    Article  CAS  Google Scholar 

  3. Hebard AF, Rosseinsky MJ, Haddon RC (1991) Nature 350:600

    Article  CAS  Google Scholar 

  4. Kroto HW (1997) Rev Mod Phys 69:703

    Article  CAS  Google Scholar 

  5. Prinzbach H, Weiler A, Landenberger P, Wahl F, Wörth J, Scott LT, Gelmont M, Olevano D, Issendorff B v (2000) Nature 407(60)

  6. Kroto HW (1987) Nature 329:529

    Article  CAS  Google Scholar 

  7. Lin F, Sorensen ES, Kallin C, Berlinsky AJ (2007) Phys Rev B 76:033414

    Article  Google Scholar 

  8. Song H, Reed MA, Lee T (2011) Adv Mater 23:1583

    Article  CAS  Google Scholar 

  9. Datta S (1995) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  10. Durkan C (2007) Current at the nanoscale. Imperial College Press, London

    Google Scholar 

  11. Kaur M, Sawhney RS, Engles D (2016) Mater Today: Proceedings 3:1304

    Article  Google Scholar 

  12. Kaur M, Sawhney RS, Engles D (2015) Quantum Matter 4:182

    Article  Google Scholar 

  13. Kaur M, Sawhney RS, Engles D (2013) J Multiscale Model 5:1350010. https://doi.org/10.1142/S1756973713500108

    Article  CAS  Google Scholar 

  14. Kaur M, Sawhney RS (2016) Mater Today: Proceedings 3:2422

    Article  Google Scholar 

  15. Cerón MR, Li F, Echegoyen LA (2014) J Phys Org Chem 7:258

    Article  Google Scholar 

  16. Bethune DS, Johnson RD, Salem JR, DE Vries MS, Yannoni CS (1993) Nature 366:123

    Article  CAS  Google Scholar 

  17. http://www.sciencealert.com/scientists-create-world-s-most-expensive-material-valued-at-145-million-per-gram. Retrieved 20–02-2017

  18. An Y, Yang C, Wang M, Ma X, Wang D (2010) Curr Appl Phys 10:260

    Article  Google Scholar 

  19. An Y, Yang C, Wang M, Ma X, Wang D (2010) Chin Phys B 19

  20. Wu J, Sun Z, Li X, Ma B, Tian M, Li S (2011) Internat J Quant Chem 111:3786

    CAS  Google Scholar 

  21. An Y, Yang C, Wang M, Ma X, Wang D (2011) J Clust Sci 22:31

    Article  CAS  Google Scholar 

  22. Kumar R, Rani A (2011) Physica B 406:1173

    Article  CAS  Google Scholar 

  23. Baei MT, Soltani A, Torabi P, Hosseini F (2014) Monat Chem 145:1401

    Article  CAS  Google Scholar 

  24. Kaur M, Sawhney RS, Engles D (2016) J Mater Res 31:2025

    Article  CAS  Google Scholar 

  25. Kaur M, Sawhney RS, Engles D (2016) Mol Phys 114:3255

    Article  CAS  Google Scholar 

  26. Kaur M, Sawhney RS (2012) J Multiscale Model 4 (3) 1250011

  27. Roland C, Larade B, Taylor J, Guo H (2010) Phys Rev B: Condens Matter Mater Phys 65:041401(R)

    Article  Google Scholar 

  28. Kaur M, Sawhney RS, Engles D (2013) International conference on advanced nanomaterials and emerging engineering technologies, (ICANMEET). IEEE, Chennai 2013:426–430

    Google Scholar 

  29. Stokbro K (2008) J Phys Condens Matter 20:064216

    Article  CAS  Google Scholar 

  30. Atomistix Tool Kit Manual Version 13.8.0 (Copyright QuantumWise 2008–2016)

  31. Strange M, Kristensen S, Thygesen KS, Jacobsen KW (2008) J Chem Phys 128:114714

    Article  CAS  Google Scholar 

  32. Troullier N, Martins JL (1991) Phys Rev B 43:1993

    Article  CAS  Google Scholar 

  33. Kaur M, Sawhney RS, Engles D (2017) J Mater Res 32:414

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milanpreet Kaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Sawhney, R.S. & Engles, D. Ab initio scrutiny of endohedral C20 fullerenes implanted in between gold electrodes. J Mol Model 24, 81 (2018). https://doi.org/10.1007/s00894-018-3594-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3594-y

Keywords

Navigation