Advertisement

Investigation of the interactions between 1-butyl-3-methylimidazolium-based ionic liquids and isobutylene using density functional theory

  • Xiaoning Li
  • Wenli Guo
  • Yibo Wu
  • Wei Li
  • Liangfa Gong
  • Xiaoqian Zhang
  • Shuxin Li
  • Yuwei Shang
  • Dan Yang
  • Hao Wang
Original Paper

Abstract

To identify ionic liquids (ILs) that could be used as solvents in isobutylene (IB) polymerization, the interactions between IB and eight different ILs based on the 1-butyl-3-methylimidazolium cation ([Bmim]+) were investigated using density functional theory (DFT). The anions in the ILs were chloride, hexafluorophosphate, tetrafluoroborate, bis[(trifluoromethyl)sulfonyl]imide, tetrachloroaluminate ([AlCl4]), tetrachloroferrate, acetate, and trifluoroacetate. The interaction geometries were explained by changes in the total energy, intermolecular distances, Hirshfeld charges, and the electrostatic potential surface. The IL solvents were screened by comparing their interaction intensities with IB to the interaction intensities of reference ILs ([AlCl4]-based ILs) with IB. The microscopic mechanism for IB dissolution was rationalized by invoking a previously reported microscopic mechanism for the dissolution of gases in ILs. Computation results revealed that hydrogen (H) bonding between C2–H on the imidazolium ring and the anions plays a key role in ion pair (IP) formation. The addition of IB leads to slight changes in the dominant interactions of the IP. IB molecules occupied cavities created by small angular rearrangements of the anions, just as CO2 does when it is dissolved in an IL. The limited total free space in the ILs and the much larger size of IB than CO2 were found to be responsible for the poor solubility of IB compared with that of CO2 in the ILs.

Keywords

Ionic liquids Isobutylene Interactions Density functional theory Molecular modeling 

Notes

Acknowledgments

This work was supported by the National Science Foundation of China (nos. 51573020, 51373026, 51503019, and 51503019), the Beijing Natural Science Foundation (nos. 2172022 and 2162014), the Beijing Science and Technology Project of the Beijing Municipal Education Commission (KM201710017005), the Undergraduate Training Program (no. 2016-238), and the URT Program (no. 2016J00036).

Supplementary material

894_2018_3586_MOESM1_ESM.docx (73 kb)
ESM 1 (DOCX 73 kb)
894_2018_3586_MOESM2_ESM.docx (276 kb)
ESM 2 (DOCX 275 kb)
894_2018_3586_MOESM3_ESM.docx (319 kb)
ESM 3 (DOCX 319 kb)
894_2018_3586_MOESM4_ESM.docx (306 kb)
ESM 4 (DOCX 305 kb)
894_2018_3586_MOESM5_ESM.docx (15 kb)
ESM 5 (DOCX 15 kb)
894_2018_3586_MOESM6_ESM.docx (15 kb)
ESM 6 (DOCX 15 kb)
894_2018_3586_MOESM7_ESM.docx (18 kb)
ESM 7 (DOCX 17 kb)
894_2018_3586_MOESM8_ESM.docx (22 kb)
ESM 8 (DOCX 21 kb)
894_2018_3586_MOESM9_ESM.docx (16 kb)
ESM 9 (DOCX 15 kb)
894_2018_3586_MOESM10_ESM.docx (16 kb)
ESM 10 (DOCX 15 kb)
894_2018_3586_MOESM11_ESM.docx (22 kb)
ESM 11 (DOCX 21 kb)
894_2018_3586_MOESM12_ESM.docx (37 kb)
ESM 12 (DOCX 37 kb)

References

  1. 1.
    Mallakpour S, Rafiee Z (2011) Ionic liquids as environmentally friendly solvents in macromolecules chemistry and technology, part I. J Polym Environ 19:447–484.  https://doi.org/10.1007/s10924-011-0287-3
  2. 2.
    Mallakpour S, Rafiee Z (2011) Ionic liquids as environmentally friendly solvents in macromolecules chemistry and technology, part II. J Polym Environ 19:485–517.  https://doi.org/10.1007/s10924-011-0291-7
  3. 3.
    Kunz W, Häckl K (2016) The hype with ionic liquids as solvents. Chem Phys Lett 661:6–12.  https://doi.org/10.1016/j.cplett.2016.07.044 CrossRefGoogle Scholar
  4. 4.
    Kubisa P (2009) Ionic liquids as solvents for polymerization processes—progress and challenges. Prog Polym Sci 34:1333–1347.  https://doi.org/10.1016/j.progpolymsci.2009.09.001 CrossRefGoogle Scholar
  5. 5.
    Dyson PJ, Geldbach TJ (2007) Applications of ionic liquids in synthesis and catalysis. Electrochem Soc Interf 16:50–53.  https://doi.org/10.1002/chin.200849267 Google Scholar
  6. 6.
    Wasserscheid P, Keim W (2000) Ionic liquids—new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772–3789Google Scholar
  7. 7.
    Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A Gen 373:1–56.  https://doi.org/10.1016/j.apcata.2009.10.008 CrossRefGoogle Scholar
  8. 8.
    Gilbert B, Olivier-Bourbigou H, Favre F (2007) Chloroaluminate ionic liquids: from their structural properties to their applications in process intensification. Oil Gas Sci Technol 62:745–759.  https://doi.org/10.2516/ogst:2007068
  9. 9.
    Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083.  https://doi.org/10.1021/cr980032t CrossRefGoogle Scholar
  10. 10.
    Nasirov FA, Novruzova FM, Aslanbeili AM, Azizov AG (2007) Ionic liquids in catalytic processes of transformation of olefins and dienes (review). Pet Chem 47:309.  https://doi.org/10.1134/S0965544107050015 CrossRefGoogle Scholar
  11. 11.
    Fredlake CP, Muldoon MJ, Aki SNVK, Welton T, Brennecke JF (2004) Solvent strength of ionic liquid/CO2 mixtures. Phys Chem Chem Phys 6:3280–3285.  https://doi.org/10.1039/B400815D
  12. 12.
    Ferreira AR, Freire MG, Ribeiro JC, Lopes FM, Crespo JG, Coutinho JAP (2014) Ionic liquids for thiols desulfurization: experimental liquid–liquid equilibrium and COSMO-RS description. Fuel 128:314–329.  https://doi.org/10.1016/j.fuel.2014.03.020 CrossRefGoogle Scholar
  13. 13.
    Lu J, Yan F, Texter J (2009) Advanced applications of ionic liquids in polymer science. Prog Polym Sci 34:431–448.  https://doi.org/10.1016/j.progpolymsci.2008.12.001 CrossRefGoogle Scholar
  14. 14.
    Brandt A, Ray MJ, To TQ, Leak DJ, Murphy RJ, Welton T (2011) Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chem 13:2489–2499.  https://doi.org/10.1039/C1GC15374A CrossRefGoogle Scholar
  15. 15.
    Foroutana M, Fatemi SM, Farshad E (2017) A review of the structure and dynamics of nanoconfined water and ionic liquids via molecular dynamics simulation. Eur Phys J E 40:19.  https://doi.org/10.1140/epje/i2017-11507-7 CrossRefGoogle Scholar
  16. 16.
    Vijayaraghavan R, Macfarlaned R (2012) Novel acid initiators for the rapid cationic polymerization of styrene in room temperature ionic liquids. Sci China Chem 55:1671–1676.  https://doi.org/10.1007/s11426-012-4658-y CrossRefGoogle Scholar
  17. 17.
    Zhang XQ, Guo WL, Wu YB, Gong LF, Li W, Li XN, Li SX, Shang YW, Yang D, Wang H (2016) Cationic polymerization of p-methylstyrene in selected ionic liquids and polymerization mechanism. Polym Chem 7:5099–5122.  https://doi.org/10.1039/c6py00796a
  18. 18.
    Wu YB, Han LU, Zhang XQ, Mao J, Gong LF, Guo WL, Gu K, Li SX (2015) Cationic polymerization of isobutyl vinyl ether in an imidazole-based ionic liquid: characteristics and mechanism. Polym Chem 6:2560–2568.  https://doi.org/10.1039/C4PY01784F
  19. 19.
    Yoshimitsu H, Kanazawa A, Kanaoka S, Aoshima S (2016) Cationic polymerization of vinyl ethers with alkyl or ionic side groups in ionic liquids. J Polym Sci A Polym Chem 54:1774–1784.  https://doi.org/10.1002/pola.28039 CrossRefGoogle Scholar
  20. 20.
    Einloft S, Dietrich FK, DE Souza RF, Dupont J (1996) Selective two-phase catalytic ethylene dimerization by NiII complexes/AlEtCl2 dissolved in organoaluminate ionic liquids. Polyhedron 15:3257–3259Google Scholar
  21. 21.
    Wasserscheid P, Eichmann M (2001) Selective dimerisation of 1-butene in biphasic mode using buffered chloroaluminate ionic liquid solvents—design and application of a continuous loop reactor. Catal Today 66:309–316.  https://doi.org/10.1016/S0920-5861(00)00617-9
  22. 22.
    Wasserscheida P, Hilgers C, Keim W (2004) Ionic liquids—weakly-coordinating solvents for the biphasic ethylene oligomerization to α-olefins using cationic Ni-complexes. J Mol Catal A Chem 214:83–90.  https://doi.org/10.1016/j.molcata.2003.11.032 CrossRefGoogle Scholar
  23. 23.
    Murphy V (2000) Ionic liquids and process for production of high molecular weight polyisoolefins. Patent WO20000032658 A1Google Scholar
  24. 24.
    Yang SQ, Liu ZC, Meng XH, Xu CM (2009) Oligomerization of isobutene catalyzed by iron(III) chloride ionic liquids. Energy Fuel 23:70–73.  https://doi.org/10.1021/ef800687a CrossRefGoogle Scholar
  25. 25.
    Magna L, Bildé J, Olivier-Bourbigou H, Robert T, Gilbert B (2009) About the acidity catalytic activity relationship in ionic liquids: application to the selective isobutene dimerization. Oil Gas Sci Technol 64:669–679.  https://doi.org/10.2516/ogst/2009041
  26. 26.
    Hunt PA, Kirchner B, Welton T (2006) Characterising the electronic structure of ionic liquids: an examination of the 1-butyl-3-methylimidazolium chloride ion pair. Chem Eur J 12:6762–6775.  https://doi.org/10.1002/chem.200600103
  27. 27.
    Zhou JX, Mao JB, Zhang SG (2008) Ab initio calculations of the interaction between thiophene and ionic liquids. Fuel Process Technol 89:1456–1460.  https://doi.org/10.1016/j.fuproc.2008.07.006 CrossRefGoogle Scholar
  28. 28.
    Anantharaj R, Banerjee T (2011) Quantum chemical studies on the simultaneous interaction of thiophene and pyridine with ionic liquids. AICHE J 57(3):749–764.  https://doi.org/10.1002/aic.12281
  29. 29.
    Dai YF, Qu YX, Wang S, Wang JD (2014) Theoretical study on the interactions between ionic liquid and solute molecules for typical separation problems. Chem Phys Lett 608:366–372.  https://doi.org/10.1016/j.cplett.2014.03.008 CrossRefGoogle Scholar
  30. 30.
    Morrow TI, Maginn EJ (2002) Molecular dynamics study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J Phys Chem B 106(49):12807–12813.  https://doi.org/10.1021/jp0267003
  31. 31.
    Pádua AAH, Gomes MFC, Lopes JNAC (2007) Molecular solutes in ionic liquids: a structural perspective. Acc Chem Res 40(11):1087–1096.  https://doi.org/10.1021/ar700050q
  32. 32.
    Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ (2004) Why is CO2 so soluble in imidazolium-based ionic liquids? J Am Chem Soc 126:8–5300.  https://doi.org/10.1021/ja039615x CrossRefGoogle Scholar
  33. 33.
    Huang X, Margulis CJ, Li Y et al (2005) Why is the partial molar volume of CO2 so small when dissolved in a room temperature ionic liquid? J Am Chem Soc 127:17842–17851.  https://doi.org/10.1021/ja055315z
  34. 34.
    Hu YF, Liu ZC, Xu CM, Zhang XM (2011) The molecular characteristics dominating the solubility of gases in ionic liquids. Chem Soc Rev 40:3802–3823.  https://doi.org/10.1039/C0CS00006J CrossRefGoogle Scholar
  35. 35.
    Wang YT, Voth GA (2005) Unique spatial heterogeneity in ionic liquids. J Am Chem Soc 127:12192–12193.  https://doi.org/10.1021/ja053796g CrossRefGoogle Scholar
  36. 36.
    Shah JK, Brennecke JF, Maginn EJ (2002) Thermodynamic properties of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate from Monte Carlo simulations. Green Chem 4(2):112–118.  https://doi.org/10.1039/b110725a
  37. 37.
    Prasad BR, Senapati S (2009) Explaining the differential solubility of flue gas components in ionic liquids from first-principle calculations. J Phys Chem B 113:4739–4743.  https://doi.org/10.1021/jp805249h CrossRefGoogle Scholar
  38. 38.
    Li HP, Zhu WS, Chang YH, Jiang W, Zhang M, Yin S, Xia JX, Li HM (2015) Theoretical investigation of the interaction between aromatic sulfur compounds and [BMIM]+[FeCl4] ionic liquid in desulfurization: a novel charge transfer mechanism. J Mol Graph Model 59:40–49.  https://doi.org/10.1016/j.jmgm.2015.03.007 CrossRefGoogle Scholar
  39. 39.
    Martínez-Magadán JM, Oviedo-Roa R, García P, Martínez-Paloua R (2012) DFT study of the interaction between ethanethiol and Fe-containing ionic liquids for desulfuration of natural gasoline. Fuel Process Technol 97:24–29.  https://doi.org/10.1016/j.fuproc.2012.01.007 CrossRefGoogle Scholar
  40. 40.
    Lu R, Liu D, Lu YK, Lin J (2013) Electronic and topological properties of interactions between imidazolium-based ionic liquids and thiophenic compounds: a theoretical investigation. J Iran Chem Soc 10:733–744.  https://doi.org/10.1007/s13738-012-0207-z CrossRefGoogle Scholar
  41. 41.
    Zhou JX, Zhang YC, Guo XW, Song WJ, Bai HL, Zhang AF (2006) Removal of C2H4 from a CO2 stream by adsorption: a study in combination of ab initio calculation and experimental approach. Energy Fuel 20:778–782.  https://doi.org/10.1021/ef050182o CrossRefGoogle Scholar
  42. 42.
    Li HY, Lu YX, Wu WH, Liu YT, Peng CJ, Liu HL, Zhu WL (2013) Noncovalent interactions in halogenated ionic liquids: theoretical study and crystallographic implications. Phys Chem Chem Phys 15:4405–4414.  https://doi.org/10.1039/C3CP44649B CrossRefGoogle Scholar
  43. 43.
    Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517.  https://doi.org/10.1063/1.458452 CrossRefGoogle Scholar
  44. 44.
    Delley B (2000) From molecules to solids with the dmol3 approach. J Chem Phys 113:7756–7764.  https://doi.org/10.1063/1.1316015 CrossRefGoogle Scholar
  45. 45.
    Accelrys Software Inc. (2011) Materials Studio release notes, release 6.0. Accelrys Software Inc., San DiegoGoogle Scholar
  46. 46.
    Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249CrossRefGoogle Scholar
  47. 47.
    Morco RP, Musa AY, Wren JC (2014) The molecular structures and the relationships between the calculated molecular and observed bulk phase properties of phosphonium-based ionic liquids. Solid State Ionics 258:74–81.  https://doi.org/10.1016/j.ssi.2014.02.004 CrossRefGoogle Scholar
  48. 48.
    Castellano O, Gimon R, Soscun H (2011) Theoretical study of the σ–π and π–π interactions in heteroaromatic monocyclic molecular complexes of benzene, pyridine, and thiophene dimers: implications on the resin-asphaltene stability in crude oil. Energy Fuel 25:2526–2541.  https://doi.org/10.1021/ef101471t
  49. 49.
    Delley B (2002) Hardness conserving semilocal pseudopotentials. Phys Rev B 66(15):155125.  https://doi.org/10.1103/PhysRevB.66.155125
  50. 50.
    Bultinck P, Alsenoy CV, Ayers PW (2007) Critical analysis and extension of the Hirshfeld atoms in molecules. J Chem Phys 126:144111.  https://doi.org/10.1063/1.2715563 CrossRefGoogle Scholar
  51. 51.
    Murray JS, Lane P, Brinck T, Politzer P, Sjoberg P (1991) Electrostatic potentials on the molecular surfaces of cyclic ureides. J Phys Chem 95(2):844–848Google Scholar
  52. 52.
    Inada Y, Orita H (2008) Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: evidence of small basis set superposition error compared to Gaussian basis sets. J Comput Chem 29:225–232.  https://doi.org/10.1002/jcc.20782 CrossRefGoogle Scholar
  53. 53.
    Proft FDE, Alsenoy CV, Peeters A, Langenaeker W, Geerlings P (2002) Atomic charges, dipole moments, and Fukui functions using the Hirshfeld partitioning of the electron density. J Comput Chem 23:1198–1209.  https://doi.org/10.1002/jcc.10067
  54. 54.
    Davidson ER, Chakravorty S (1992) A test of the Hirshfeld definition of atomic charges and moments. Theor Chim Acta 83:319–330CrossRefGoogle Scholar
  55. 55.
    Damme SV, Bultinck P, Fias S (2009) Electrostatic potentials from self-consistent Hirshfeld atomic charges. J Chem Theory Comput 5:334–340.  https://doi.org/10.1021/ct800394q CrossRefGoogle Scholar
  56. 56.
    Zhang S, Lu X, Zhou Q, Li XH, Zhang XP, Li SC (2009) Ionic liquids: physicochemical properties. Elsevier, AmsterdamGoogle Scholar
  57. 57.
    Bondi A (1964) Van der Waals volumes and radii. J Phys Chem 68:441–451Google Scholar
  58. 58.
    Lopes JNC, Gomes MFC, Pádua AAH (2006) Nonpolar, polar and associating solutes in ionic liquids. J Phys Chem B 110(34):16816–16818.  https://doi.org/10.1021/jp063603r CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaoning Li
    • 1
    • 2
    • 3
  • Wenli Guo
    • 1
    • 2
    • 3
  • Yibo Wu
    • 2
    • 3
  • Wei Li
    • 2
    • 3
  • Liangfa Gong
    • 2
    • 3
  • Xiaoqian Zhang
    • 1
    • 2
    • 3
  • Shuxin Li
    • 2
    • 3
  • Yuwei Shang
    • 2
    • 3
  • Dan Yang
    • 2
    • 3
  • Hao Wang
    • 2
    • 3
  1. 1.College of Material Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.Department of Materials Science and EngineeringBeijing Institute of Petrochemical TechnologyBeijingChina
  3. 3.Beijing Key Lab of Special Elastomeric Composite MaterialsBeijingChina

Personalised recommendations