Advertisement

Theoretical study of the electronic structure of mono-chloride of lanthanum molecule including spin-orbit coupling effect

  • Yaman Hamade
  • Ahmad El Sobbahi
Original Paper
  • 49 Downloads

Abstract

Our investigation is devoted to the theoretical study of the low-lying electronic structure of the LaCl molecule by using ab initio quantum methods. We are concerned with several methods such as the complete active space-self consistent field (CAS-SCF) and the multi reference of configuration interaction (MRCI + Q) methods. These methods are applied for the purpose of drawing the potential energy curves (PECs) and calculating the molecular spectroscopic constants for a given number of electronic states of singlet and triplet multiplicity. We count 26 2S+ 1 Λ(±) electronic states located below 24,000 cm− 1 neglecting the spin-orbit effects and 47 Ω(±) components taken into consideration these effects. Our calculations are performed via the quantum ab initio package MOLPRO (Werner and Knowles 2000).

Graphical Abstract

A new set of low-lying electronic states on the theoretical energetic level diagram for the LaCl molecule among the first four lanthanum monhalides.

Keywords

Diatomic molecules Ab initio methods Theoretical electronic states Spectroscopic constants Ab initio package MOLPRO 

Notes

Acknowledgements

We present our appreciation and deep thanks to Mr. Florent REAL, Professor at the University of Sciences and Technologies Lille 1-France and member on PHLAM laboratory for his support and sincere discussion of this work. We also thank Pr. Fadia TAHER, Head of the Common trunc at the Faculty of Engineering III on the Lebanese University and the director of the Molecular Quantum Mechanics and Modeling Laboratory. We also thank Mr. Jihad SIDAWI, Professor at the Faculty of Engineering III at the Lebanese University and member on the Molecular Quantum Mechanics and Modeling Laboratory for his cooperation.

References

  1. 1.
    Werner H-J, Knowles P-J (2000) MOLPRO ab-initio program package. Universities of Stuttgart and Birmingham, BirminghamGoogle Scholar
  2. 2.
    Xiaoyan C, Wenjian L, Dolg M (2002) Molecular structure of diatomic lanthanide compounds. Science In China (series B) 45(1):91–96CrossRefGoogle Scholar
  3. 3.
    Xiaoyan C, Dolg M (2005) Pseudopotential studies on the electronic structure of lanthanum monohalides LaF, LaCl LaBr, and LaI. J Theor Comput Chem 04 spec01:583–592Google Scholar
  4. 4.
    Field RW (1982) Diatomic molecule electronic structure beyond simple molecular constants. Ber Bunsenges Phys Chem 86:771–779CrossRefGoogle Scholar
  5. 5.
    Linton CS, Rice MS, Dulick M et al (1983) Laser spectroscopy of YbO: observation and analysis of some 0+-1 Σ+ transitions. J Mol Spectrosc 101(1):332–343CrossRefGoogle Scholar
  6. 6.
    Dulick M, Murad E, Barrow RF (1986) Thermochemical properties of the rare earth monoxide. J Chem Phys 85(1):385– 390CrossRefGoogle Scholar
  7. 7.
    McDonald SA, Rice RF, Field RW (1990) Laser spectroscopy of low-lying excited states in YbO: linkage of the Y b 2+ f 13 s and f 14 configurations. J Chem Phys 93(11):7676–7686CrossRefGoogle Scholar
  8. 8.
    Dolg M, Stoll H (1996) Electronic structure calculations for molecules containing lanthanide atoms. In: Gschneidner KA Jr, Eyring L (eds) Handbook of the physics and chemistry of rare earths, vol 22. Elsevier, Amsterdam, pp 607–729Google Scholar
  9. 9.
    Chen L-H, Shang R-C (2003) Analytical potential energy function for the ground state X1 Σ+ of LaCl. J Mol Struct, THEOCHEM 629(1–3):37–42CrossRefGoogle Scholar
  10. 10.
    Armentrout PB, Beauchamp JL (1989) The chemistry of atomic transition-metal ions: insight into fundamental aspects of organometallic chemistry. Acc Chem Res 22(9):315–321CrossRefGoogle Scholar
  11. 11.
    Carlson KD, Claydon CR (1967) Electronic structure of molecules of high temperature interest. Adv High Temp Chem 1:43–94CrossRefGoogle Scholar
  12. 12.
    Rubinoff DS, Evans CJ, Gerry MCL (2003) The pure rotational spectra of the lanthanum monohalides, LaF, LaCl, LaBr, LaI. J Mol Spectrosc 218:169–179CrossRefGoogle Scholar
  13. 13.
    Schall H, Linton C, Field RW (1983) Laser spectroscopy of LaF: determination of the separation of the singlet and triplet state manifolds. J Mol Spectrosc 100:437–448CrossRefGoogle Scholar
  14. 14.
    Langhoff SR, Bauschlicher CW Jr, Partridge H (1988) Erratum: Theoretical study of the scandium and yttrium halides. J Chem Phys 89(1):396–407CrossRefGoogle Scholar
  15. 15.
    Xin J, Klynning L (1994) Fourier transform spectroscopy of LaCl: rotational analyses of the infrared band system. Physica Script 49:209–213CrossRefGoogle Scholar
  16. 16.
    Basics R, Bernard AC, Zgainsky A (1975) Electronic spectrum of the lanthanum hydride and lanthanum deuteride molecules. R Acad Sci B, Comptes Rendus des Seances de l’Academie des Sciences, Serie B: Sciences Physiques 280(4):77. 8CODEN: CHDBAN; ISSN: 0366-6077Google Scholar
  17. 17.
    Barrow RF, Bastin MW, Moore DLG, Pott CJ (1967) Electronic states of gaseous fluorides of scandium, yttrium and lanthanum. Nature 215(5105):1072–1073CrossRefGoogle Scholar
  18. 18.
    Bernard A, Effantin C, d’Incan J, Verges J (2000) The (1)1 π, (2)1 σ + x 1 σ + transitions of LaF. J Mol Spectrosc 202(1):163–165CrossRefGoogle Scholar
  19. 19.
    Kaledin LA, Kaledin AL, Heaven MC (1997) Laser absorption spectroscopy of LaF analysis of the b 1 πx 1 σ + transition. J Mol Spectrosc 182:50–56CrossRefGoogle Scholar
  20. 20.
    Kaledin LA, Mccord JE, Heaven MC (1994) Laser spectroscopy of LaF: ligand field-theory assignment of the triplet-state manifold and analysis of hyperfine structure. J Opt Soc Am B 11:219– 224CrossRefGoogle Scholar
  21. 21.
    Kuchle W, Dolg M, Stoll H (1997) Ab initio study of the lanthanide and actinide contraction. J Phys Chem 101:7128– 7133CrossRefGoogle Scholar
  22. 22.
    Hong GY, Dolg M, Li LM (2001) A comparison of scalar-relativistic ZORA and DKH density functional schemes: monohydrides, monoxides and monofluorides of La, Lu, Ac and Lr. Chem Phys Lett 334:396–402CrossRefGoogle Scholar
  23. 23.
    Laerdahl JK, KF Jr, Visscher L, Saue T (1998) A fully relativistic Dirac–Hartree–Fock and second-order Mller-Plesset study of the lanthanide and actinide contraction. J Chem Phys 109(24):10806–10817CrossRefGoogle Scholar
  24. 24.
    Chervonnyi AD, Chervonnaya NA (2004) Thermodynamic properties of lanthanum chlorides. Inorg Mater 40:1097–1104CrossRefGoogle Scholar
  25. 25.
    Chervonnyi AD, Chervonnaya NA (2007) Thermodynamic properties of some lanthanum and lanthanides, halides: I. Thermodynamic functions of LaF(gas) and LaCl(gas). Russ J Inorg Chem 52(6):884–894CrossRefGoogle Scholar
  26. 26.
    Chervonnyi AD, Chervonnaya NA (2007) Thermodynamic properties of some lanthanum and lanthanide halides: II. Thermodynamic functions of gaseous molecules LnX(Ln=Ce-Lu, X=F, Cl). Russ J Inorg Chem 52(8):1230–1242CrossRefGoogle Scholar
  27. 27.
    Chervonnyi AD, Chervonnaya NA (2007) Thermodynamic properties of lanthanum and lanthanide halides: IV. Enthalpies of atomization of LnCl, LnCl+, LnF, LnF+, and L n F 2. Russ J Inorg Chem 52(12):1937–1952CrossRefGoogle Scholar
  28. 28.
    Kaledin LA, Heaven MC, Field RW (1999) Thermochemical properties (D\(_{0}^{\circ }\) and IP) of the lanthanide monohalides. J Mol Spectrosc 193(2):285–292CrossRefGoogle Scholar
  29. 29.
    Sergeev DN, Motalov VB, Butman MF, Kiselev AE, Kudin LS, Kramer KW (2014) Atomization energies of LnX molecules (Ln = Sm, Eu, and Yb; X = Cl, Br, and I). J Chem Eng data 59:4010–4014CrossRefGoogle Scholar
  30. 30.
    Hamade Y, Taher F, Choueib M, Monteil Y (2009) Theoretical electronic investigation of the low-lying electronic states of LuF molecule. Can. J. Phys 87:1163–1169CrossRefGoogle Scholar
  31. 31.
    Hamade Y, Bazzi H, Sidawi J, Taher F, Monteil Y (2012) Ab initio study of the lowest-lying electronic states of LuCl molecules. J Phys Chem A 116:12123–12128CrossRefGoogle Scholar
  32. 32.
    Fahes H, Korek M, Allouche AR, Aubert-Frecon M (2004) Theoretical electronic structure of the lowest-lying states of the LaCl molecules. J Chem Phys 229:97–103Google Scholar
  33. 33.
    Davidson ER, Silver DW (1977) Size consistency in the dilute helium gas electronic structure. Chem Phys Lett 52(3):403–406CrossRefGoogle Scholar
  34. 34.
    Martin WC, Zalubas R, Hagan L (1978) Atomic Energy levels. The Rare-Earth Elements, NSRDS-NBRDS60. Nat Stand Ref Data Ser, Nat Bur Stand 60Google Scholar
  35. 35.
    Zhu ZH (2007) The atomic and molecular reaction statics. Sci China Ser G Phys Mech Astron 50(5):581–590CrossRefGoogle Scholar
  36. 36.
    Murrell JN, Sorbie KS (1974) New analytic from for the potential energy curves of stable diatomic state. J Chem Soc, Faraday Trans II 70:1552–1557CrossRefGoogle Scholar
  37. 37.
    Martin WC, Zalubas R, Hagan L (1978) Nat Stand Ref Data Ser, NSRDS-NBS60, 422 pp Nat Bur StandGoogle Scholar
  38. 38.
    Radziemski LJ, Kaufman V (1969) Wavelengths, energy levels, and analysis of neutral atomic chlorine (Cl I). J Opt Soc Am 59(4):424–443CrossRefGoogle Scholar
  39. 39.
    Stevens WJ, Krauss M, Basch H, Jasien PG (1992) Can J Chem 70:612–630CrossRefGoogle Scholar
  40. 40.
    Cao X, Dolg M (2001) J Chem Phys 115:7348–7355CrossRefGoogle Scholar
  41. 41.
    Bergner A, Dolg M, Kuechle W, Stoll H, Preuss H (1993) Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol Phys 80:1431–1441CrossRefGoogle Scholar
  42. 42.
    Widmark PO, Malmqvist PA, Roos B (1990) Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. Theor Chem Acta 77(5):291–306CrossRefGoogle Scholar
  43. 43.
    Widmark PO, Persson BJ, Roos B (1991) Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. Theor Chem Acta 79(6):419–432CrossRefGoogle Scholar
  44. 44.
    Martin JDD, Hepburn JW (1988) Determination of bond dissociation energies by threshold ion-pair production spectroscopy. An improved D-O(HCl). J Chem Phys 109(19):8139–8142CrossRefGoogle Scholar
  45. 45.
    Fahes H, Allouche AR (2002) Theoretical electronic structure of the lowest-lying states of the LaF molecule. J Chem Phys 117:3715–3720CrossRefGoogle Scholar
  46. 46.
    Taher-Mansour F, Allouche AR, Aubert-Frecon M (2003) Theoretical electronic structure of the lowest-lying states of the LaI molecules. J Mol Spectro 221:1–6CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MQMM lab associated to the research platformTR2NLebanese University, faculty of Engineering branch IIIRafic Hariri Campus-HadathLebanon
  2. 2.Petrochemistry Department, Faculty of Engineering IIILebanese UniversityBeirutLebanon
  3. 3.Faculty of Sciences ILebanese UniversityRafic Hariri Campus-HadathLebanon

Personalised recommendations