DFT study of nano zinc/copper voltaic cells

Original Paper
  • 79 Downloads
Part of the following topical collections:
  1. P. Politzer 80th Birthday Festschrift

Abstract

To facilitate the development of new materials for use in batteries, it is necessary to develop ab initio full-electron computational techniques for modeling potential new battery materials. Here, we tested density functional theory procedures that are accurate enough to obtain the energetics of a zinc/copper voltaic cell. We found the magnitude of the zero-point energy correction to be 0.01–0.2 kcal/mol per atom or molecule and the magnitude of the dispersion correction to be 0.1–0.6 kcal/mol per atom or molecule for Zn n , (H2O) n , \( \mathrm{Zn}{\left({\mathrm{H}}_2\mathrm{O}\right)}_n^{2+} \), \( \mathrm{Cu}{\left({\mathrm{H}}_2\mathrm{O}\right)}_n^{2+} \), and Cu n . Counterpoise correction significantly affected the values of ∆\( {E}_n^{\mathrm{abs}} \), ∆\( {E}_n^{\mathrm{coh}} \), and ∆Esolv by 1.0–3.1 kcal/mol per atom or molecule at the B3PW91/6-31G(d) level of theory, but by only 0.04–0.4 kcal/mol per atom or molecule at the B3PW91/cc-pVTZ level of theory. The application of B3PW91/6-31G(d) yielded results that differed from macroscopic experimental values by 0.1–7.1 kcal/mol per atom or molecule, whereas applying B3PW91/cc-pVTZ produced results that differed from macroscopic experimental values by 0.1–4.8 kcal/mol per atom or molecule, with the smallest differences occurring for reactions with a small macroscopic experimental ∆E and the largest differences occurring for reactions with a large macroscopic experimental ∆E, implying size consistency.

Keywords

Voltaic cell DFT Nanobattery Battery Zinc Copper 

Notes

Acknowledgements

We would like to thank the Texas A&M University High Performance Research Computing Center for allowing us to use their facilities.

References

  1. 1.
    Beguin F, Presser V, Balducci A, Frackowiak E, Béguin F (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26(14):2219–2251CrossRefGoogle Scholar
  2. 2.
    Daniel L, Bourbon C, Pagano C, Patoux S, Lignier H, Le Cras F, Jouanneau S, Martinet S (2009) High voltage spinel oxides for li-ion batteries: from the material research to the application. J Power Sources 189(1):344–352CrossRefGoogle Scholar
  3. 3.
    Li C, Liu H, Zhang HP, Fu LJ, Wu YP, Rahm E, Holze R, Wu HQ (2006) Cathode materials modified by surface coating for lithium ion batteries. Electrochim Acta 51(19):3872–3883CrossRefGoogle Scholar
  4. 4.
    Liu H, Li C, Rahm E, Fu LJ, Wu YP, Holze R, Wu HQ (2006) Surface modifications of electrode materials for lithium ion batteries. Solid State Sci 8(2):113–128CrossRefGoogle Scholar
  5. 5.
    Biendicho JJ, Roberts M, Offer C, Noréus D, Widenkvist E, Smith RI, Svensson G, Edström K, Norberg ST, Eriksson SG, Hull S (2014) New in-situ neutron diffraction cell for electrode materials. J Power Sources 248:900–904CrossRefGoogle Scholar
  6. 6.
    Ma R, Shu J, Hou L, Shui M, Shao L, Wang D, Ren Y (2013) Ex situ FTIR spectroscopy study of LiVPO4F as cathode material for lithium-ion batteries. Ionics 19(5):725–730CrossRefGoogle Scholar
  7. 7.
    Liu X, Wang D, Liu G, Srinivasan V, Liu Z, Hussain Z, Yang W (2013) Distinct charge dynamics in battery electrodes revealed by in situ and operando soft x-ray spectroscopy. Nat Commun 4:2568.  https://doi.org/10.1038/ncomms3568 https://www.nature.com/articles/ncomms3568#supplementary-information Google Scholar
  8. 8.
    Turney D, Gallaway J, Yadav G, Ramirez R, Nyce M, Banerjee S, Chen Wiegart Y-C, Wang J, Dambrose M, Kolhekar S, Huang J, Wei X (2017) Rechargeable zinc alkaline anodes for long-cycle energy storage. Chem Mater 29(11):4819–4832CrossRefGoogle Scholar
  9. 9.
    Zhang Y, Kirshenbaum K, Marschilok A, Takeuchi E, Takeuchi K (2017) Operando synchrotron XRD investigation of silver metal formation upon electrochemical reduction of silver iron pyrophosphate (Ag7Fe3(P2O7)4). J Phys Chem C 121(22):12080–12090CrossRefGoogle Scholar
  10. 10.
    Tonin G, Vaughan G, Bouchet R, Alloin F, Di Michiel M, Boutafa L, Colin J-F, Barchasz C (2017) Multiscale characterization of a lithium/sulfur battery by coupling operando x-ray tomography and spatially-resolved diffraction. Sci Rep 7(1):2755–2755CrossRefGoogle Scholar
  11. 11.
    Anseán D, Dubarry M, Devie A, Liaw BY, García VM, Viera JC, González M (2017) Operando lithium plating quantification and early detection of a commercial LiFePO4 cell cycled under dynamic driving schedule. J Power Sources 356:36–46.  https://doi.org/10.1016/j.jpowsour.2017.04.072 CrossRefGoogle Scholar
  12. 12.
    Xue D, Balachandran PV, Hogden J, Theiler J, Xue D, Lookman T (2016) Accelerated search for materials with targeted properties by adaptive design. Nat Commun 7:11241.  https://doi.org/10.1038/ncomms11241 https://www.nature.com/articles/ncomms11241#supplementary-information CrossRefGoogle Scholar
  13. 13.
    Aguirre J, Ferreira A, Ding H, Jenekhe S, Kopidakis N, Asta M, Pilon L, Rubin Y, Tolbert S, Schwartz B, Dunn B, Ozolins V (2014) Panoramic view of electrochemical pseudocapacitor and organic solar cell research in Molecularly Engineered Energy Materials (MEEM). J Phys Chem C 118(34):19505–19523CrossRefGoogle Scholar
  14. 14.
    Nagarajan V, Chandiramouli R (2017) Interaction of alcohols on monolayer stanane nanosheet: a first-principles investigation. Appl Surf Sci 419:9–15.  https://doi.org/10.1016/j.apsusc.2017.05.017 CrossRefGoogle Scholar
  15. 15.
    Maidur SR, Patil PS, Ekbote A, Chia TS, Quah CK (2017) Molecular structure, second- and third-order nonlinear optical properties and DFT studies of a novel non-centrosymmetric chalcone derivative: (2E)-3-(4-fluorophenyl)-1-(4-{[(1E)-(4- fluorophenyl)methylene]amino}phenyl)prop-2-en-1-one. Spectrochim Acta A Mol Biomol Spectrosc 184:342–354.  https://doi.org/10.1016/j.saa.2017.05.015 CrossRefGoogle Scholar
  16. 16.
    Xiao Y, Liu Y, Frederick N, Zhang FC (2017) Ab initio study of the electronic structure, magnetic and dynamics properties in LiMO2 and NaMO2 (MV and Cr) as electrode cathode material for batteries. Solid State Ionics 307:26–34.  https://doi.org/10.1016/j.ssi.2017.05.007 CrossRefGoogle Scholar
  17. 17.
    Benitez L, Seminario J (2016) Electron transport and electrolyte reduction in the solid- electrolyte interphase of rechargeable lithium ion batteries with silicon anodes. J Phys Chem C 120(32):17978–17988CrossRefGoogle Scholar
  18. 18.
    Galvez Aranda D, Ponce V, Seminario J (2017) Molecular dynamics simulations of the first charge of a Li-ion—Si-anode nanobattery. J Mol Model 23(4):120–120CrossRefGoogle Scholar
  19. 19.
    Kumar N, Seminario J (2016) Lithium-ion model behavior in an ethylene carbonate electrolyte using molecular dynamics. J Phys Chem C 120(30):16322–16332CrossRefGoogle Scholar
  20. 20.
    Soto FA, Soto FA, Seminario JM, Balbuena PB (2016) Modeling solid-electrolyte interfacial phenomena in silicon anodes. Curr Opin Chem Eng 13(supplement):179–185CrossRefGoogle Scholar
  21. 21.
    Stournara M, Qi Y, Shenoy V (2014) From ab initio calculations to multiscale design of Si/C core–shell particles for li-ion anodes. Nano Lett 14(4):2140–2149CrossRefGoogle Scholar
  22. 22.
    Pournamdari E, Monajjemi M, Zare K (2012) Ab initio study of thermodynamic properties, IR spectra and electrical properties of Cu.OH nanosemiconductor. Life Sci 9(4):1729–1738Google Scholar
  23. 23.
    Emons H (2013) Method validation. Accred Qual Assur 18(6):457–458.  https://doi.org/10.1007/s00769-013-1018-3 CrossRefGoogle Scholar
  24. 24.
    McEvoy AJ (2013) Fundamentals and applications of electrochemistry. EPJ Web Conf 54:01018CrossRefGoogle Scholar
  25. 25.
    Martins GF (1990) Why the Daniell cell works! J Chem Educ 67(6):482–482CrossRefGoogle Scholar
  26. 26.
    Mills A (2003) Early voltaic batteries: an evaluation in modern units and application to the work of davy and faraday. Ann Sci 60(4):373–398CrossRefGoogle Scholar
  27. 27.
    Li YG, Gong M, Liang YY, Feng J, Kim JE, Wang HL, Hong GS, Zhang B, Dai HJ (2013) Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat Commun 4.  https://doi.org/10.1038/ncomms2812
  28. 28.
    Pan HL, Shao YY, Yan PF, Cheng YW, Han KS, Nie ZM, Wang CM, Yang JH, Li XL, Bhattacharya P, Mueller KT, Liu J (2016) Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy 1.  https://doi.org/10.1038/nenergy.2016.39
  29. 29.
    Parker JF, Chervin CN, Pala IR, Machler M, Burz MF, Long JW, Rolison DR (2017) Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356(6336):415–418.  https://doi.org/10.1126/science.aak9991 CrossRefGoogle Scholar
  30. 30.
    Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12(3):194–206CrossRefGoogle Scholar
  31. 31.
    Tse J, Yang J (2011) First-principles methods in the modeling of li-ion battery materials. In: Lithium-ion batteries. Green chemistry and chemical engineering. CRC Press, pp 253–302.  https://doi.org/10.1201/b11292-7
  32. 32.
    Warren M, Ackland G, Karki B, Clark S (1998) Phase transitions in silicate perovskites from first principles. Mineral Mag 62(5):585–598CrossRefGoogle Scholar
  33. 33.
    Sulcius A (2014) Student misconceptions in studying “Galvanic Cells”. INTED2014 Proc: 7528–7535Google Scholar
  34. 34.
    Generalic E (2017) Galvanic cell. Chemistry glossary.Google Scholar
  35. 35.
    Frisch MJ, T GW, Schlegel HB, Scuseria GE, Robb MA, C JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, revision D. 01. Gaussian, Inc, WallingfordGoogle Scholar
  36. 36.
    Dillon IP, Head JD (1991) A cluster model study of multiple H adsorption on Be(0001). Surf Sci 245(3):439–451.  https://doi.org/10.1016/0039-6028(91)90045-T CrossRefGoogle Scholar
  37. 37.
    Miller A (1941) Lange’s handbook of chemistry. Am J Public Health Nations Health 31(12):1324–1324CrossRefGoogle Scholar
  38. 38.
    Kovacs A, Dobrowolski J, Rode J, Kovács A, Ostrowski S (2017) Benchmarking density functionals in conjunction with Grimme’s dispersion correction for noble gas dimers (Ne2, Ar2, Kr2, Xe2, Rn2). Int J Quantum Chem 117(9):e25358CrossRefGoogle Scholar
  39. 39.
    Sigurdsson S, Stromberg R (2001) Evaluation of several economical computational methods for geometry optimisation of phosphorus acid derivatives. Nucleosides Nucleotides Nucleic Acids 20(4–7):1381–1384.  https://doi.org/10.1081/ncn-100002560 CrossRefGoogle Scholar
  40. 40.
    Skriver HL, Ruban AV, Nørskov JK, Vitos L, Kollár J (2000) Steps, kinks, and segregation at metallic surfaces. Prog Surf Sci 64(3):193–198.  https://doi.org/10.1016/S0079-6816(00)00016-2 CrossRefGoogle Scholar
  41. 41.
    Chase Jr MW (1998) NIST-JANAF themochemical tables, fourth edition. J Phys Chem Ref Data Monogr 9:1–1951Google Scholar
  42. 42.
    Cottrel TL (1958) The strengths of chemical bonds2nd edn. Butterworth, LondonGoogle Scholar
  43. 43.
    Darwent BD (1970) National bureau of standards. WashingtonGoogle Scholar
  44. 44.
    Li B-X, Zhu Y-H, Lu C-X, Ye G-X (2017) From zinc clusters to one-dimensional crystals on quasi-free sustained substrates. J Clust Sci 28(6):3281–3298.  https://doi.org/10.1007/s10876-017-1296-8 CrossRefGoogle Scholar
  45. 45.
    Cabane B, Vuilleumier R (2005) The physics of liquid water. Compt Rendus Geosci 337:159CrossRefGoogle Scholar
  46. 46.
    Feyereisen MW, Feller D, Dixon DA (1996) Hydrogen bond energy of the water dimer. J Phys Chem 100(8):2993–2997.  https://doi.org/10.1021/jp952860l CrossRefGoogle Scholar
  47. 47.
    Bingham RJ, Ballone P (2013) Energy, structure and vibrational modes of small water clusters by a simple many-body potential mimicking polarisation effects. Mol Phys 111(22–23):3502–3514.  https://doi.org/10.1080/00268976.2013.831142 CrossRefGoogle Scholar
  48. 48.
    Marcus Y, Loewenschuss A (1984) Chapter 4: standard entropies of hydration of ions. Annu Rep Prog Chem, Sect C: Phys Chem 81:81–135CrossRefGoogle Scholar
  49. 49.
    Smith DW (1977) Ionic hydration enthalpies. J Chem Educ 54:540CrossRefGoogle Scholar
  50. 50.
    Xiang JY, Ponder JW (2013) A valence bond model for aqueous Cu(II) and Zn(II) ions in the AMOEBA polarizable force field. J Comput Chem 34(9):739–749.  https://doi.org/10.1002/jcc.23190 CrossRefGoogle Scholar
  51. 51.
    Liu W, Liu D, Zheng WT, Jiang Q (2008) Size and structural dependence of cohesive energy in Cu. J Phys Chem C 112(48):18840–18845.  https://doi.org/10.1021/jp7114143 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationUSA
  3. 3.Department of Materials Science and EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations