Advertisement

Double-layer carbon nanocapsules with radioiodine content and its interaction with calcium, phosphorus, and strontium

  • Alejandro Valderrama
  • Radamés Reynoso
  • Raúl W. Gómez
  • Manuel Quintana
  • Martín Romero
Original Paper
  • 137 Downloads

Abstract

First principles calculations have been performed for C60@C180 carbon double-layer endofullerenes with up to: three diatomic radioiodine molecules (131I2), two potassium radio-iodide (K131I), and three sodium radio-iodide (Na131I) inside. The plane-wave pseudopotential (PP) method within the general gradient approximation (GGA) in the framework of the density functional theory (DFT) and time-dependent DFT (TD-DFT) was used to perform geometric optimizations (GOs) and molecular dynamics (MD) at 310 K and atmospheric pressure. We found that the double-layer carbon nanocapsules formed by two concentric fullerenes (C180 surrounding C60) are very stable and may contain a radiodosis, without altering their configuration; that is, the 3(131I2)@C60@C180, 2(K131I)@C60@C180, and 3(Na131I)@C60@C180 systems constitute stable nanocapsules. We analyzed the interaction of double-layer endofullerene with radioactive content with some calcium, phosphorus, and strontium atoms, [n(X131I)@C60@C180 + mY], for X = I, K, Na; Y = Ca, P, Sr; n = 1, 2, 3; m = 1, …, 20. Our calculations show that up to m = 20 calcium atoms can easily be physisorbed by the outer surface of the double-layer endofullerene, maintaining their integrity and shielding the radiodosis of any interaction that can proceed from the outside. It is thus concluded that these double-layer endofullerenes can be functionalized as vectors to deliver radiodosis with structural advantages over the single layer systems; as they are more robust, stable, and possess a larger surface to functionalize with some atoms serving as molecular recognizers.

Graphical abstract

Double-layer carbon nanocapsules with radioiodine content and its interaction with calcium, phosphorus and strontium

Keywords

Buckyball C60 Endofullerene Nanocapsule Radioiodine 

Notes

Acknowledgements

Thanks to Consejo Nacional de Ciencia y Tecnología for the financial support given to this work in the national postdoctoral program, to FAM Laboratory of Science Faculty and to Miztli Supercomputer Center of the Dirección General de Tecnologías de la Información y Comunicación of the Universidad Nacional Autónoma de México; and to the Laboratorio Nacional de Supercómputo del Sureste de México of the Benemérita Universidad Autónoma de Puebla for their technical support on many of the computations performed.

References

  1. 1.
    Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds) SEER Cancer Statistics Review, 1975-2013, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2013/, based on November 2015 SEER data submission, posted to the SEER web site, April 2016. https://seer.cancer.gov/csr/1975_2013/. http://www.nature.com/cr/journal/v27/n1/full/cr2016153a.html
  2. 2.
    Paddock Catharine (2012) New clue to how cancer cells spread. MNT Knowledge Center. http://www.medicalnewstoday.com/articles/251306.php
  3. 3.
    Vicent S, Luis-Ravelo D, Antón I, Hernández I, Martínez S, de las Rivas J, Gúrpide A, Lecanda F (2006) Las metástasis óseas del cáncer. Anales del Sistema Sanitario de Navarra. 29(2). http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137-66272006000300002
  4. 4.
    Tashiro H, Brenner MK (2017) Immunotherapy against cancer-related viruses. Cell Research 27:59–73.  https://doi.org/10.1038/cr.2016.153 http://www.nature.com/cr/journal/v27/n1/full/cr2016153a.html CrossRefGoogle Scholar
  5. 5.
    Morgan RA, Dudley ME et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314(5796):126-129.  https://doi.org/10.1126/science.1129003. http://science.sciencemag.org/content/314/5796/126?variant=full-text&sso=1&sso_redirect_count=1&oauth-code=5cd56f06-ffb4-4ce1-bf7d-6d96585e1e20
  6. 6.
    Liu N, Meng Z, Jia Q, Tan J, Zhang G, Zheng W, Wang R, Li X, Hu T, Upadhyaya A, Zhou P, Wang S (2016) Multiple-factor analysis of the first radioactive iodine therapy in post-operative patients with differentiated thyroid cancer for achieving a disease-free status. Sci Rep 6:34915.  https://doi.org/10.1038/srep34915. http://www.nature.com/articles/srep34915
  7. 7.
    Nwatsock JF et al (2012) Radioiodine thyroid ablation in graves’ hyperthyroidism: merits and pitfalls. World J Nucl Med 11(1):7–11.  https://doi.org/10.4103/1450-1147.98731 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425234/?report=classic CrossRefGoogle Scholar
  8. 8.
    Liao L, Liu J, Dreaden EC, Morton SW, Shopsowitz KE, Hammond PT, Johnson JA (2014) Convergent synthetic platform for single-nanoparticle combination cancer therapy: Ratiometric loading and controlled release of cisplatin, doxorubicin, and camptothecin. J Am Chem Soc 136(16):5896–5899.  https://doi.org/10.1021/ja502011g http://pubs.acs.org/doi/abs/10.1021/ja502011g
  9. 9.
    Babu PJ, Saranya S, Mallepogu V (2015) Nanoformulations as drug delivery vehicles for cancer treatment. Austin J Nanomed Nanotechnol 3(1):1038 Google Scholar
  10. 10.
    Misra SK, Ostadhossein F, Daza E, Johnson EV, Pan D (2016) Hyperspectral imaging offers visual and quantitative evidence of drug release from zwitterionic-phospholipid-nanocarbon when concurrently tracked in 3D intracellular space. Adv Funct Mater 26:8031–8041 Google Scholar
  11. 11.
    Hong SY, Tobias G (2010) Filled glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat Mater 9:485–490.  https://doi.org/10.1038/nmat2766
  12. 12.
    Martinčić M, Pach E, Ballesteros B, Tobias G (2013) Filling of single-walled and multi-walled carbon nanotubes with inorganic payloads. NanoMedicine School. Abstract Collection, University of Trieste. http://www.dscf.units.it/nms2013/Abstract_files/NMS2013%20Abstract%20collection.pdf
  13. 13.
    Umran NM et al (2015) Study of endohedral doped C60 fullerene using model potentials. Mater Res Express 2:055603.  https://doi.org/10.1088/2053-1591/2/5/055603
  14. 14.
    Valderrama A, Guzmán J (2014) Encapsulation of sodium radio-iodide in fullerene C60. J Molec Model 20:2130.  https://doi.org/10.1007/s00894-014-2130-y
  15. 15.
    Valderrama A, Reynoso R, Gómez RW, Marquina V (2016) Self-stability of C60 nanocapsules with radio-iodide content and its interaction with calcium atoms. J Mol Model  https://doi.org/10.1007/s00894-015-2898-4. http://link.springer.com/article/10.1007%2Fs00894-015-2898-4
  16. 16.
    Walther JH, Jaffe R, Halicioglu T, Koumoutsakos (2001) Carbon nanotubes in water: structural characteristics and energetics. Chem Phys B 105:9980.  https://doi.org/10.1021/jp011344u.
  17. 17.
    Popadić A, Praprotnik M, Koumoutsakos P, Walther JH (2015) Continuum simulations of water flow past fullerene molecules. Europ Phys J Spec Top.  https://doi.org/10.1140/epjst/e2015-02414-y http://link.springer.com/article/10.1140%2Fepjst%2Fe2015-02414-y
  18. 18.
    Jaffe RL, Walther JH, Kotsalis E, Werder T, Halicioglu PT (2013) Molecular dynamics simulations of fullerenes and carbon nanotubes in water. NASA Ames Research Center. http://www.electrochem.org/dl/ma/201/pdfs/0937.pdf
  19. 19.
    Valderrama A, Reynoso R, Gómez RW et al (2017) Interactions of calcium with the external surfaces of fullerenes and endofullerenes doped with radioactive sodium iodide. J Mol Model 23:15.  https://doi.org/10.1007/s00894-016-3187-6
  20. 20.
    Bartelmess J, Giordani S (2014) Carbon nano-onions (multi-layer fullerenes): chemistry and applications. Beilstein J Nanotechnol 5:1980–1998.  https://doi.org/10.3762/bjnano.5.207
  21. 21.
    Kostarelos K (2008) The long and short of carbon nanotube toxicity. Nat Biotechnol 26(7):774–776.  https://doi.org/10.1038/nbt0708-774
  22. 22.
    Ghorbanzadeh Ahangari M, Fereidoon A, Darvish Ganji M, Sharifi N. Density functional theory based molecular dynamics simulation study on the bulk modulus of multi-shell fullerenes. Physica B: Condensed Matter 423(15):1–5. http://www.sciencedirect.com/science/article/pii/S0921452613002664
  23. 23.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford, pp 76-77. https://es.scribd.com/doc/124889930/Density-functional-theory-of-atoms-and-molecules
  24. 24.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871 http://users.wfu.edu/natalie/s15phy752/lecturenote/HohenbergPhysRev.136.B864.pdf CrossRefGoogle Scholar
  25. 25.
    Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52(12):997–1000.  https://doi.org/10.1103/PhysRevLett.52.997 http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.52.997 CrossRefGoogle Scholar
  26. 26.
    Marx D, Hutte J (2000) Ab initio molecular dynamics: theory and implementation. Modern methods and algorithms of quantum chemistry. In: Grotendorst J (ed) NIC Series, vol. 1. John von Neumann Institute for Computing, Jülich, pp 301–449 http://www.theochem.ruhr-uni-bochum.de/research/marx/marx.pdf
  27. 27.
    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C et al (2009) Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502–395519 http://www.quantum-espresso.org/news/1494/ CrossRefGoogle Scholar
  28. 28.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.77.3865 CrossRefGoogle Scholar
  29. 29.
    Giannozzi P (2016) Notes on pseudopotential generation. Scuola Normale Superiore di Pisa. http://www.quantum-espresso.org/wp-content/uploads/Doc/pseudo-gen.pdf
  30. 30.
    Troullier N, Martíns JL (1991) Efficient pseudo potentials for plane-wave calculations. Phys Rev B 43:1993–2006 http://journals.aps.org/prb/abstract/10.1103/PhysRevB.43.1993 CrossRefGoogle Scholar
  31. 31.
    Methfessel M, Paxton A (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616.  https://doi.org/10.1103/PhysRevB.40.3616 https://journals.aps.org/prb/abstract/10.1103/PhysRevB.40.3616 CrossRefGoogle Scholar
  32. 32.
    González-Hernández R, López-Pérez W, Moreno-Armenta MG, Rodríguez JA (2010) Vanadium adsorption and incorporation at the GaN(0001) surface: a first-principles study. Phys Rev B 81:195407. https://journals.aps.org/prb/abstract/10.1103/PhysRevB.81.195407
  33. 33.
    Timon V, Brand S, Clark SJ, Abram RA. Theoretical adlayer surface morphology of wurtzite 2 × 2 reconstructions of the GaN(0001) surface. J Phys: Condens Matter 17:17–26. http://iopscience.iop.org/article/10.1088/0953-8984/17/1/002
  34. 34.
    Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals a new molecular dynamics method. J Appl Phys 52:7182 http://adsabs.harvard.edu/abs/1981JAP....52.7182P CrossRefGoogle Scholar
  35. 35.
    Hare J et al (2013) Some properties of carbon and C60. Brighton, East Sussex BN1 9QJ. Accessed January 2013. http://www.creative-science.org.uk/propc60.html
  36. 36.
    Yoon M et al (2008) Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage. Phys Rev Lett 100:206806 http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.206806 CrossRefGoogle Scholar
  37. 37.
    Scientific Computing & Modelling (2014) ADF program system. NV Vrije Universiteit, theoretical chemistry de Boelelaan, Amsterdam, The Netherlands. http://www.scm.com/Doc/Doc2014/ADF/ADFUsersGuide/page319.html

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Alejandro Valderrama
    • 1
  • Radamés Reynoso
    • 1
  • Raúl W. Gómez
    • 1
  • Manuel Quintana
    • 1
  • Martín Romero
    • 1
  1. 1.Facultad de CienciasUniversidad Nacional Autónoma de MéxicoDelegación CoyoacánMexico

Personalised recommendations