Skip to main content
Log in

How “drug-like” are naturally occurring anti-cancer compounds?

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We attempt to evaluate the “drug-likeness” of a collection of ∼1500 natural products, exhibiting in vitro or in vivo activities against cancers of various forms, by using a set of calculated molecular descriptors. Compliance to Lipinski’s “Rule of Five” and Jorgensen’s “Rule of Three” have been used to assess oral availability, by making use of popular parameters like molecular weights, predicted lipophilicities, number of hydrogen bond donors/acceptors, predicted aqueous solubilities, number of primary metabolites and Caco-2 permeabilities. Meanwhile 24 descriptors have been used to predict properties related to the absorption, distribution, metabolism, elimination, and toxicity (ADMET). The ADMET profiles of the anticancer natural products have been analyzed in comparision with the range of properties for 95 % of known drugs. Our results show that the computed parameters fall within the recommended range for about 42 % of the studied compounds, while respectively 63 % and 69 % of the corresponding ‘drug-like’ and ‘lead-like’ subsets had properties predicted to fall within the recommended range for 95 % of known drugs. The aim of giving a picture of how drug-like they are and bring out the need to return to natural sources in searching for anticancer lead compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

3D:

Three dimensional

ADME/T:

Absorption, distribution, metabolism, excretion, and toxicity

BBB:

Blood brain barrier

CNS:

Central nervous system

DMPK:

Drug metabolism and pharmacokinetics

DNP:

Dictionary of natural products

log P :

Logarithm of the n-octanol/water partition coefficient

MDCK:

Madin-Darby canine kidney

MW:

Molecular weight

NCI:

National Cancer Institute

NP:

Natural product

NPACT:

Naturally Occurring Plant-based Anti-cancer Compound- Activity-Target database

NRB:

Number of rotatable bonds

OPLS:

Optimized potentials for liquid simulations

QSAR:

Quantitative structure-activity relationship

Ro3:

Jorgensen’s “rule of three”

Ro5:

Lipinski’s “rule of five”

SASA:

Solvent accessible surface area

TPSA:

Total polar surface area

VS:

Virtual screening

WHO:

World Health Organisation

References

  1. WHO media centre (2013) Cancer. Fact sheet N°297. http://www.who.int/mediacentre/factsheets/fs297/en/index.html. Accessed on 28 August 2013

  2. GLOBOCAN (2008) Gbobocan 2008. Fast Stats. http://globocan.iarc.fr/factsheets/populations/factsheet.asp?uno=900. Accessed on 28 August 2013

  3. Hartwell J (1970) Plants used against cancer. A survey. Lloydia 33:97–425

    CAS  Google Scholar 

  4. Ashidi JS, Houghton PJ, Hylands PJ, Efferth T (2010) Ethnobotanical survey and cytotoxicity testing of plants of South-western Nigeria used to treat cancer, with isolation of cytotoxic constituents from Cajanus cajan Millsp. leaves. J Ethnopharmacol 128:501–512

    Article  CAS  Google Scholar 

  5. Graham JG, Quinn ML, Fabricant DS, Farnsworth NR (2010) Plants used against cancer—an extension of the work of Jonathan Hartwell. J Ethnopharmacol 73:347–377

    Article  Google Scholar 

  6. Rahman MM, Khan MA (2013) Anti-cancer potential of South Asian plants. Nat Prod Bioprospect 3:74–88

    Article  CAS  Google Scholar 

  7. Lamari FN, Cordopatis P (2008) Exploring the potential of natural products in cancer treatment. In: Missailidis S (ed) Anticancer therapeutics. Wiley-Blackwell, West Sussex

    Google Scholar 

  8. Cragg GM, Newman DJ (2003) Plants as a source of anti-cancer and anti-HIV agents. Ann Appl Biol 143:127–133

    Article  CAS  Google Scholar 

  9. Pan L, Chai HB, Kinghorn AD (2013) Discovery of new anticancer agents from higher plants. Front Biosci (Schol Ed) 4:142–156

    Google Scholar 

  10. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327

    Article  CAS  Google Scholar 

  11. Noble RH, Beer CT, Cutts JH (1959) Further biological activities of vincaleukoblastine—an alkaloid isolated from Vinca rosea (L.). Biochem Pharmacol 1:347–348

    Article  Google Scholar 

  12. Neuss N, Gorman M, Boaz HE, Cone NJ (1962) Vinca alkaloids. XI. Structures of leurocristine and vincaleukoblastine. J Am Chem Soc 84:1509–1510

    Article  CAS  Google Scholar 

  13. Svoboda GH (1961) Alkaloids of Vinca rosea (Catharanthus roseus). IX. Extraction and characterization of leurosidine and leurocristine. Lloydia 24:173–178

    CAS  Google Scholar 

  14. Hartwell JL, Schrecker AW (1951) Components of podophyllin. V. The constitution of podophyllotoxin. J Am Chem Soc 73:2909–2916

    Article  CAS  Google Scholar 

  15. Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, Sim GA (1966) Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88:3888–3890

    Article  CAS  Google Scholar 

  16. Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4:206–220

    Article  CAS  Google Scholar 

  17. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    Article  CAS  Google Scholar 

  18. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  CAS  Google Scholar 

  19. Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13:894–901

    Article  CAS  Google Scholar 

  20. Lam KS (2007) New aspects of natural products in drug discovery. Trends Microbiol 15:279–289

    Article  CAS  Google Scholar 

  21. Li JWH, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165

    Article  Google Scholar 

  22. Darvas F, Keseru G, Papp A, Dormán G, Urge L, Krajcsi P (2002) In silico and ex silico ADME approaches for drug discovery. Curr Top Med Chem 2:1287–1304

    Article  CAS  Google Scholar 

  23. DiMasi JA, Hansen RW, Grabowsk HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22:151–185

    Article  Google Scholar 

  24. Cronin MTD (2003) Computer-assisted prediction of drug toxicity and metabolism in modern methods of drug discovery. In: Hilgenfeld R, Hillisch A (eds) Modern methods of drug discovery. Birkhäuser, Basel

    Google Scholar 

  25. Hodgson J (2001) ADMET—turning chemicals into drugs. Nat Biotechnol 19:722–726

    Article  CAS  Google Scholar 

  26. Hansch C, Leo A, Mekapatia SB, Kurup A (2004) QSAR and ADME. Bioorg Med Chem 12:3391–3400

    Article  CAS  Google Scholar 

  27. Tetko IV, Bruneau P, Mewes H-W, Rohrer DC, Poda GI (2006) Can we estimate the accuracy of ADMET predictions? Drug Discov Today 11:700–707

    Article  CAS  Google Scholar 

  28. Greene N, Judson PN, Langowski JJ (1999) Knowledge-based expert systems for toxicity and metabolism prediction: DEREK, StAR and METEOR. SAR QSAR Environ Res 10:299–314

    Article  CAS  Google Scholar 

  29. Button WG, Judson PN, Long A, Vessey JD (2003) Using absolute and relative reasoning in the prediction of the potential metabolism of xenobiotics. J Chem Inf Comput Sci 43:1371–1377

    Article  CAS  Google Scholar 

  30. Ntie-Kang F, Mbah JA, Mbaze LM, Lifongo LL, Scharfe M, Ngo Hanna J, Cho-Ngwa F, Amoa Onguéné P, Owono Owono LC, Megnassan E, Sippl W, Efange SMN (2013) CamMedNP: building the Cameroonian 3D structural natural products database for virtual screening. BMC Complement Altern Med 13:88

    Article  Google Scholar 

  31. Ntie-Kang F (2013) An in silico evaluation of the ADMET profile of the streptome DB database. Springer Plus 2:353

    Article  Google Scholar 

  32. Ntie-Kang F, Lifongo LL, Mbah JA, Owono Owono LC, Megnassan E, Mbaze LM, Judson PN, Sippl W, Efange SMN (2013) In silico drug metabolism and pharmacokinetic profiles of natural products from medicinal plants in the Congo basin. In Silico Pharmacol 1:12

    Article  Google Scholar 

  33. Ntie-Kang F, Mbah JA, Lifongo LL, Owono Owono LC, Megnassan E, Mbaze LM, Judson PN, Sippl W, Efange SMN (2013) Assessing the pharmacokinetic profile of the CamMedNP natural products database: an in silico approach. Org Med Chem Lett 3:10

    Article  CAS  Google Scholar 

  34. Ntie-Kang F, Zofou D, Babiaka SB, Meudom R, Scharfe M, Lifongo LL, Mbah JA, Mbaze LM, Sippl W, Efange SMN (2013) AfroDb: a select highly potent and diverse natural product library from African medicinal plants. PLoS ONE 8(10): e78085. doi:10.1371/journal.pone.0078085

  35. Mangal M, Sagar P, Singh H, Raghava GPS, Agarwal SM (2013) NPACT: naturally occurring plant-based anti-cancer compound-activity-target database. Nucl Acids Res 41:D1124–D1129

    Article  CAS  Google Scholar 

  36. Schrödinger (2011) LigPrep software, version 2.5. LLC, New York

    Google Scholar 

  37. Schrödinger (2011) Maestro, version 9.2. LLC, New York

    Google Scholar 

  38. Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W (2010) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 6:1509–1519

    Article  CAS  Google Scholar 

  39. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236

    Article  CAS  Google Scholar 

  40. Jorgensen WL, Tirado-Rives J (1988) The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110(6):1657–1666

    Article  CAS  Google Scholar 

  41. Schrödinger (2011) QikProp, version 3.4. LLC, New York

    Google Scholar 

  42. Jorgensen WL, Duffy EM (2000) Prediction of drug solubility from Monte Carlo simulations. Bioorg Med Chem Lett 10:1155–1158

    Article  CAS  Google Scholar 

  43. Jorgensen WL, Duffy EM (2002) Prediction of drug solubility from structure. Adv Drug Deliv Rev 54:355–366

    Article  CAS  Google Scholar 

  44. Duffy EM, Jorgensen WL (2000) Prediction of properties from simulations: free energies of solvation in hexadecane, octanol, and water. J Am Chem Soc 122:2878–2888

    Article  CAS  Google Scholar 

  45. Schrödinger Press (2011) QikProp 3.4 user manual. LLC, New York

    Google Scholar 

  46. Colmenarejo G, Alvarez-Pedraglio A, Lavandera J-L (2001) Cheminformatic models to predict binding affinities to human serum albumin. J Med Chem 44:4370–4378

    Article  CAS  Google Scholar 

  47. Luco JM (1999) Prediction of brain–blood distribution of a large set of drugs from structurally derived descriptors using partial least squares (PLS) modelling. J Chem Inf Comput Sci 39:396–404

    Article  CAS  Google Scholar 

  48. Kelder J, Grootenhuis PD, Bayada DM, Delbresine LP, Ploemen JP (1999) Polar molecular surface as a dominating determinant for oral absorption and brain pernetration of drugs. Pharm Res 16:1514–1519

    Article  CAS  Google Scholar 

  49. Ajay, Bermis GW, Murkco MA (1999) Designing libraries with CNS activity. J Med Chem 42:4942–4951

    Article  CAS  Google Scholar 

  50. Yazdanian M, Glynn SL, Wright JL, Hawi A (1998) Correlating partitioning and caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm Res 15:1490–1494

    Article  CAS  Google Scholar 

  51. Irvine JD, Takahashi L, Lockhart K, Cheong J, Tolan JW, Selick HE, Grove JR (1999) MDCK (Madin-Darby canine kidney) cells: a tool for membrane permeability screening. J Pharm Sci 88:28–33

    Article  CAS  Google Scholar 

  52. Stenberg P, Norinder U, Luthman K, Artursson P (2001) Experimental and computational screening models for the prediction of intestinal drug absorption. J Med Chem 44:1927–1937

    Article  CAS  Google Scholar 

  53. Cavalli A, Poluzzi E, De Ponti F, Recanatini M (2002) Toward a pharmacophore for drugs inducing the long QT syndrome: insights from a CoMFA study of HERG K+ channel blockers. J Med Chem 45:3844–3853

    Article  CAS  Google Scholar 

  54. De Ponti F, Poluzzi E, Montanaro N (2001) Organising evidence on QT prolongation and occurrence of Torsades de Pointes with non-antiarrhythmic drugs: a call for consensus. Eur J Clin Pharmacol 57:185–209

    Article  Google Scholar 

  55. Potts RO, Guy RH (1992) Predicting skin permeability. Pharm Res 9:663–669

    Article  CAS  Google Scholar 

  56. Potts RO, Guy RH (1995) A predictive algorithm for skin permeability: the effects of molecular size and hydrogen bond activity. Pharm Res 12:1628–1633

    Article  CAS  Google Scholar 

  57. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  58. Teague SJ, Davis AM, Leeson PD, Opea TI (1999) The design of leadlike combinatorial libraries. Angew Chem Int Ed 38:3743–3748

    Article  CAS  Google Scholar 

  59. Oprea TI (2002) Current trends in lead discovery: are we looking for the appropriate properties? J Comput Aided Mol Des 16:325–334

    Article  CAS  Google Scholar 

  60. Schneider G (2002) Trends in virtual computational library design. Curr Med Chem 9:2095–2102

    Article  CAS  Google Scholar 

  61. Verdonk ML, Cole JC, Hartshorn ML, Murray CW, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins 52:609–623

    Article  CAS  Google Scholar 

  62. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44:235–249

    Article  CAS  Google Scholar 

  63. Quinn RJ, Carroll AR, Pham MB, Baron P, Palframan ME, Suraweera L, Pierens GK, Muresan S (2008) Developing a drug-like natural product library. J Nat Prod 71:464–468

    Article  CAS  Google Scholar 

  64. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    Article  CAS  Google Scholar 

  65. (2005) Dictionary of natural products on CD-rom. Chapman and Hall/CRC Press, London

  66. Hedley PL, Jørgensen P, Schlamowitz S, Wangari R, Moolman-Smook J, Brink PA, Kanters JK, Corfield VA, Christiansen M (2009) The genetic basis of long QT and short QT syndromes: a mutation update. Hum Mutat 30:1486–1511

    Article  CAS  Google Scholar 

  67. Vandenberg JI, Walker BD, Campbell TJ (2001) HERG K+ channels: friend or foe. Trends Pharmacol Sci 22:240–246

    Article  CAS  Google Scholar 

  68. Chiesa N, Rosati B, Arcangeli A, Olivotto M, Wanke E (1997) A novel role for HERG K+ channels: spike-frequency adaptation. J Physiol 501:313–318

    Article  CAS  Google Scholar 

  69. Aronov AM (2005) Predictive in silico modeling for hERG channel blockers. Drug Discov Today 10:149–155

    Article  CAS  Google Scholar 

  70. Dunkel M, Fullbeck M, Neumann S, Preissner R (2006) Super natural: a searchable database of available natural compounds. Nucl Acids Res 34:D678–D683

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support is acknowledged from Lhasa Ltd, Leeds, UK and the academic licence is gratefully acknowledged from Schrodinger Inc., for using the QikProp, Maestro and LigPrep software. The authors acknowledge the support of Drs James A Mbah and Kennedy D Nyongbela of the Chemistry Department, University of Buea, Cameroon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fidele Ntie-Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ntie-Kang, F., Lifongo, L.L., Judson, P.N. et al. How “drug-like” are naturally occurring anti-cancer compounds?. J Mol Model 20, 2069 (2014). https://doi.org/10.1007/s00894-014-2069-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2069-z

Keywords

Navigation