Skip to main content
Log in

In silico screening for antibiotic escort molecules to overcome efflux

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Resistance to antibiotics is a growing problem worldwide and occurs in part due to the overexpression of efflux pumps responsible for the removal of antibiotics from bacterial cells. The current study examines complex formation between efflux pump substrates and escort molecules as a criterion for an in silico screening method for molecules that are able to potentiate antibiotic activities. Initially, the SUPERDRUG database was queried to select molecules that were similar to known multidrug resistance (MDR) modulators. Molecular interaction fields generated by GRID and the docking module GLUE were used to calculate the interaction energies between the selected molecules and the antibiotic norfloxacin. Ten compounds forming the most stable complexes with favourable changes to the norfloxacin molecular properties were tested for their potentiation ability by efflux pump modulation assays. Encouragingly, two molecules were proven to act as efflux pump modulators, and hence provide evidence that complex formation between a substrate and a drug can be used for in silico screening for novel escort molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2a–b
Fig. 3
Fig. 4a–d
Fig. 5

Similar content being viewed by others

References

  1. Marquez B (2005) Bacterial efflux systems and efflux pumps inhibitors. Biochimie 87:1137–1147. doi:10.1016/j.biochi.2005.04.012

    Article  CAS  Google Scholar 

  2. Nelson ML (2002) Modulation of antibiotic efflux in bacteria. Curr Med Chem Anti-Infect Agents 1:35–54. doi:10.2174/1568012023355054

  3. Ahmed M, Borsch CM, Neyfakh AA, Schuldiner S (1993) Mutants of the Bacillus subtilis multidrug transporter Bmr with altered sensitivity to the antihypertensive alkaloid reserpine. J Biol Chem 268:11086–11089

    Google Scholar 

  4. Smith E, Williamson E, Zloh M, Gibbons S (2005) Isopimaric acid from Pinus nigra shows activity against multidrug-resistant and EMRSA strains of Staphylococcus aureus. Phytother Res 19:538–542. doi:10.1002/ptr.1711

    Google Scholar 

  5. Zloh M, Kaatz GW, Gibbons S (2004) Inhibitors of multidrug resistance (MDR) have affinity for MDR substrates. Bioorg Med Chem Lett 14:881–885. doi:10.1016/j.bmcl.2003.12.015

    Article  CAS  Google Scholar 

  6. Zloh M, Gibbons S (2007) The role of small molecule–small molecule interactions in overcoming biological barriers for antibacterial drug action. Theor Chem Acc 117:231–238. doi:10.1007/s00214-006-0149-6

    Google Scholar 

  7. Arayne MS, Sultana N, Rizvi SBS, Haroon U (2009) In vitro drug interaction studies of atorvastatin with ciprofloxacin, gatifloxacin, and ofloxacin. Med Chem Res. doi:10.1007/s00044-009-9225-5

  8. Garrido JMPJ, Marques MPM, Silva AMS, Macedo TRA, Oliviera-Brett AM, Borges F (2007) Spectroscopic and electrochemical studies of cocaine–opioid interactions. Anal Bioanal Chem 388:1799–1808

    Google Scholar 

  9. Umeda Y, Fukami T, Furuishi T, Suzuki T, Makimura M, Tomono K (2007) Molecular complex consisting of two typical external medinicines: intermolecular interaction between indomethacin and lidocaine. Chem Pharm Bull 55:832–836

    Article  CAS  Google Scholar 

  10. Zloh M, Gibbons S (2004) Molecular similarity of MDR inhibitors. Int J Mol Sci 5:37–47

    Article  CAS  Google Scholar 

  11. Schrodinger, LLC (2007) LigPrep. Schrodinger, LLC, New York

  12. Ali S et al (2011) Avogadro: an open-source molecular builder and visualization tool. http://avogadro.openmolecules.net/

  13. Mohamadi F, Richards NGJ, Guida WC, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still WC (1990) Macromodel: an integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J Comput Chem 11:440–467

    Google Scholar 

  14. Guimarães C, Cardozo M (2008) MM-GB/SA rescoring of docking poses in structure-based lead optimization. J Chem Inf Model 48:958–970. doi:10.1021/ci800004w

    Google Scholar 

  15. Halgren TA (1999) MMFF VI. MMFF94s option for energy minimization studies. J Comput Chem 20:720–729

    Article  CAS  Google Scholar 

  16. Molecular Discovery Ltd (2004) GRID, 22b edn. Molecular Discovery Ltd, Perugia (see http://www.moldiscovery.com/soft_grid.php)

  17. Pedretti A, Villa L, Vistoli G (2002) VEGA: a versatile program to convert, handle and viusualize molecular structure on windows-based PCs. J Mol Graph Model 21:47–49. doi:10.1016/S1093-3263(02)00123-7

    Article  CAS  Google Scholar 

  18. Pedretti A, Villa L, Vistoli G (2003) Atom-Type Description Language: a universal language to recognize atom types implemented in the VEGA program. Theor Chem Acc 109:229–232. doi:10.1007/s00214-002-0402-6

    Article  CAS  Google Scholar 

  19. Pedretti A, Villa L, Vistoli G (2004) VEGA: an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J Comput Aided Mol Des 18:167–173. doi:10.1023/B:JCAM.0000035186.90683.f2

  20. Drug Design Laboratory (2004–2010) Vega ZZ. Drug Design Laboratory, Milano

  21. Goede A, Dunkel M, Mester N, Frommel C, Preissner R (2005) SuperDrug: a conformational drug database. Bioinformatics 21:1751–1753. doi:10.1093/bioinformatics/bti295

    Article  CAS  Google Scholar 

  22. Broto P, Moreau G, Vandycke C (1984) Molecular structures perception, auto-correlation descriptor and SAR studies: use of the auto-correlation descriptor in the QSAR study of two non-narcotic analgesic series. Eur J Med Chem 19:79–84

    Google Scholar 

  23. Ghose AK, Pritchett A, Crippen GM (1988) Atomic physicochemical parameters for three dimensional structure directed quantitative structure–activity relationships. III: Modelling hydrophobic interactions. J Comput Chem 9:80–90

    Google Scholar 

  24. Gaillard P, Carrupt PA, Testa B, Boudon A (1994) Molecular lipophilicity potential, a tool in 3D QSAR: method and applications. J Comput Aided Mol Des 8:83–96. doi:10.1007/BF00119860

    Google Scholar 

  25. Gibbons S, Oluwatuyi M, Kaatz GW (2003) A novel inhibitor of multidrug efflux pumps in Staphylococcus aureus. J Antimicrob Chemother 51:13–17

    Google Scholar 

  26. Palm K, Luthman K, Ungell A, Strandlund G, Beigi F, Lundahl P, Artursson P (1998) Evaluation of dynamic polar molecular surface area as predictor of drug absorption: comparison with other computational and experimental predictors. J Med Chem 41:5382–5392. doi:10.1021/jm980313t

    Google Scholar 

  27. Remko M, Swart M, Bickelhaupth FM (2006) Theoretical study of structure, pK a, lipophilicity, solubility, absorption, and polar surface area of some centrally acting antihypertnesives. Bioorg Med Chem 14:1751–1728. doi:10.1016/j.bmc.2005.10.020

    Google Scholar 

  28. Bailey AM, Paulsen IT, Piddock LJV (2008) RamA confers multidrug resistance in Salmonella enterica via increased expression of acrB, which is inhibited by chlorpromazine. Antimicrob Agents Chemother 52:3604–3611

    Google Scholar 

  29. Guz NR, Stermitz FR, Johnson JB, Beeson TD, Willen S, Hsiang JF, Lewis K (2001) Flavonolignan and flavone inhibitors of a Staphylococcus aureus multidrug resistance pump: structure–activity relationships. J Med Chem 44:261–268

    Google Scholar 

  30. Mazumdar K, Dutta NK, Kumar KA, Dastidar SG (2005) In vitro and in vivo synergism between tetracycline and the cardiovascular agent oxyfedrine HCl against common bacterial strains. Biol Pharm Bull 28:713–717

    Article  CAS  Google Scholar 

  31. Dutta NK, Mazumdar K, DasGupta A, Dastidar SG (2009) Activity of the phenothiazine methdilazine alone or in combination with isoniazid or streptomycin against Mycobacterium tuberculosis in mice. J Med Microbiol 58:1667–1668

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Engineering and Physical Sciences Research Council (EPSRC) and the School of Pharmacy for providing financial support and studentship funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mire Zloh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 267 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, S.S., Simovic, I., Gibbons, S. et al. In silico screening for antibiotic escort molecules to overcome efflux. J Mol Model 17, 2863–2872 (2011). https://doi.org/10.1007/s00894-011-0978-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-0978-7

Keywords

Navigation