Skip to main content
Log in

Hydrogen bonds determine the structures of the ternary heterocyclic complexes C2H4O···2HF, C2H5N···2HF and C2H4S···2HF: density functional theory and topological calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A theoretical study of structural, electronic, topological and vibrational parameters of the ternary hydrogen-bonded complexes C2H4O···2HF, C2H5N···2HF and C2H4S···2HF is presented here. Different from binary systems with a single proton donor, the tricomplexes have the property of forming multiple hydrogen bonds, which are analyzed from a structural and vibrational point of view, but verified only by means of the quantum theory of atoms in molecules (QTAIM). As traditionally done in the hydrogen bond theory, the charge transfer between proton donors and acceptors was computed using the CHELPG calculations, which also revealed agreement with dipole moment variation and a cooperative effect on the tricomplexes. Furthermore, redshift events on proton donor bonds were satisfactorily identified, although, in this case, an absence of experimental data led to the use of a theoretical argument to interpret these spectroscopic shifts. It was therefore the use of the QTAIM parameters that enabled all intermolecular vibrational modes to be validated. The most stable tricomplex in terms of energy was identified via the strength of the hydrogen bonds, which were modeled as directional and bifurcated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Acheson RM (1976) An introduction to the chemistry of heterocyclic compounds. Wiley, New York

    Google Scholar 

  2. Katritzky AR, Ramsden CA, Scriven EFV, Taylor RJK (eds)(1995–2007) Comprehensive heterocyclic chemistry III. Elsevier, Amsterdam

  3. Christl M, Leininger H, Brunn E (1982) J Org Chem 47:661–666

    Article  CAS  Google Scholar 

  4. Singh MM, Angelici RJ (1984) Inorg Chem 23:2691–2698

    Article  CAS  Google Scholar 

  5. Bertani R, Mozzon M, Michelin RA (1988) Inorg Chem 27:2809–2815

    Article  CAS  Google Scholar 

  6. Lukevits É (1994) Chem Heterocycl Compd 30:11–12

    Article  Google Scholar 

  7. Salimon J, Salih N, Hussien, Yousif E (2009) Eur J Sci Res 31:256–264

  8. Banks HD, White WE (2001) J Org Chem 66:5981–5986

    Article  CAS  Google Scholar 

  9. Araújo OBG, RCMU CAB, Ramos MN (2007) J Theor Comput Chem 6:647–660

    Article  Google Scholar 

  10. Araújo OBG, RCMU CAB, Ramos MN (2009) Struct Chem 20:663–670

    Article  CAS  Google Scholar 

  11. Oliveira BG, Araújo RCMU, Carvalho AB, Ramos MN, Hernandes MZ, Cavalcante KR (2007) J Mol Struct THEOCHEM 802:91–97

    Article  CAS  Google Scholar 

  12. Kojić-Prodić B, Molčanov K (2008) Acta Chim Slov 55:692–708

    Google Scholar 

  13. Oliveira BG, Araújo RCMU, Carvalho AB, Ramos MN (2009) J Mol Model 15:123–131

    Article  CAS  Google Scholar 

  14. Desiraju GR (2010) Angew Chem Int Ed 49:2–10

    Google Scholar 

  15. Custelcean R, Jackson JE (2001) Chem Rev 101:1963–1980

    Article  CAS  Google Scholar 

  16. Tubergen MJ, Andrews AM, Kuczkowski RL (1993) J Phys Chem 97:7451–7457

    Article  CAS  Google Scholar 

  17. Fowler PW, Legon AC, Thumwood JMA, Waclawik ER (2000) Coord Chem Rev 197:231–247

    Article  CAS  Google Scholar 

  18. Antolínez S, Gerbi M, López LC, Alonso JL (2001) Phys Chem Chem Phys 3:796–799

    Article  Google Scholar 

  19. Goswami M, Arunan E (2009) Phys Chem Chem Phys 11:8974–8983

    Article  CAS  Google Scholar 

  20. Leung HO, Marshall MD, Drake TL, Pudlik T, Savji N, McCune DW (2009) J Chem Phys 131:204301–204308

    Article  CAS  Google Scholar 

  21. Møllendal H, Konovalov A, Guillemin JC (2010) J Phys Chem A 114:5537–5543

    Article  CAS  Google Scholar 

  22. Cooke AS, Corlett GK, Legon AC (1998) Chem Phys Lett 291:269–276

    Article  CAS  Google Scholar 

  23. Cole CG, Legon AC (2004) Chem Phys Lett 400:419–424

    Article  CAS  Google Scholar 

  24. Arunan E, Dev S, Mandal PK (2004) App Spec Rev 39:131–181

    Google Scholar 

  25. Maris A, Ottaviani P, Caminati W (2002) Chem Phys Lett 360:155–160

    Article  CAS  Google Scholar 

  26. Oliveira BG, Pereira FS, Araújo RCMU, Ramos MN (2006) Chem Phys Lett 427:181–184

    Article  CAS  Google Scholar 

  27. Del Bene JA (1996) Mol Phys 89:47–59

    Article  Google Scholar 

  28. Oliveira BG, Araújo RCMU, Carvalho AB, Lima EF, Silva WLV, Ramos MN, Tavares AM (2006) J Mol Struct THEOCHEM 755:39–45

    Article  CAS  Google Scholar 

  29. Gershinowitz H, Eyring H (1935) J Am Chem Soc 57:985–991

    Article  CAS  Google Scholar 

  30. Rozenberg BA (1986) Adv Polymer Sci 75:113–165

    Article  Google Scholar 

  31. Jursic BS (1998) J Mol Struct THEOCHEM 434:37–42

    Article  CAS  Google Scholar 

  32. Oliveira BG, Araújo RCMU, Chagas FF, Ramos MN (2008) J Mol Model 14:949–955

    Article  CAS  Google Scholar 

  33. Legon AC, Thorn JC (1994) Chem Phys Lett 227:472–479

    Article  CAS  Google Scholar 

  34. Legon AC (1995) Chem Phys Lett 247:24–31

    Article  CAS  Google Scholar 

  35. Oliveira BG, Vasconcellos MLAA (2006) J Mol Struct THEOCHEM 774:83–88

    Article  CAS  Google Scholar 

  36. Oliveira BG, Leite LFCC (2009) J Mol Struct THEOCHEM 915:38–42

    Article  CAS  Google Scholar 

  37. Legon AC, Wallwork AL, Millen DJ (1991) Chem Phys Lett 178:279–284

    Article  CAS  Google Scholar 

  38. Oliveira BG, Araújo RCMU, Carvalho AB, Ramos MN (2009) J Mol Model 15:421–432

    Article  CAS  Google Scholar 

  39. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873

    Article  CAS  Google Scholar 

  40. Bader RFW (1991) Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  41. Oliveira BG, Araújo RCMU, Pereira FS, Lima EF, Silva WLV, Carvalho AB, Ramos MN (2008) Quim Nova 31:1673–1679

    Article  CAS  Google Scholar 

  42. Rao L, Ke H, Fu G, Xu X, Yan Y (2009) J Theor Comput Chem 5:86–96

    Article  CAS  Google Scholar 

  43. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  44. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  45. Oliveira BG, Araújo RCMU, Carvalho AB, Ramos MN (2007) Chem Phys Lett 433:390–394

    Article  CAS  Google Scholar 

  46. Oliveira BG, Santos ECS, Duarte EM, Araújo RCMU, Ramos MN, Carvalho AB (2005) Spectrochim Acta A 60:1883–1887

    Google Scholar 

  47. Bader RFW (1991) Atoms in molecules. A quantum theory. Clarendon, Oxford

  48. Bone RGA, Bader RFW (1996) J Phys Chem 100:10892–10911

    Article  CAS  Google Scholar 

  49. Filho EBA, Ventura E, do Monte SA, Oliveira BG, Junior CGL, Rocha GB, Vasconcellos MLAA (2007) Chem Phys Lett 449:336–340

    Article  CAS  Google Scholar 

  50. Ren F-D, Cao D-L, Wang W-L, Ren J, Hou S-Q, Chen H-S (2009) J Mol Model 15:515–523

    Article  CAS  Google Scholar 

  51. Risikrishna Varadwaj PR (2010) J Mol Model 16:965–974

    Article  CAS  Google Scholar 

  52. Oliveira BG, Araújo RCMU, Ramos MN (2008) Struct Chem 19:185–189

    Article  CAS  Google Scholar 

  53. Oliveira BG, Vasconcellos MLAA, Olinda RR, Filho EBA (2009) Struct Chem 20:81–90

    Article  CAS  Google Scholar 

  54. Oliveira BG, Araújo RCMU, Ramos MN (2008) Struct Chem 20:665–670

    Article  CAS  Google Scholar 

  55. Oliveira BG, Vasconcellos MLAA (2009) Inorg Chem Commun 12:1142–1144

    Article  CAS  Google Scholar 

  56. Smith DA (1994) ACS Symp Ser 569:1–5

    Article  CAS  Google Scholar 

  57. Olovsson I (2006) Z Phys Chem 220:963–978

    Article  CAS  Google Scholar 

  58. Ratajczak H, Orville-Thomas WJ, Rao CNR (1976) Chem Phys 17:197–216

    Article  CAS  Google Scholar 

  59. Dognon J-P, Durand S, Granucci G, Lévy B, Millié P, Rabbe C (2000) J Mol Struct THEOCHEM 507:17–23

    Article  CAS  Google Scholar 

  60. Carbó-Dorca R, Bultinck P (2004) J Math Chem 36:231–239

    Article  Google Scholar 

  61. Breneman CM, Wiberg KB (1990) J Comput Chem 11:361–373

    Article  CAS  Google Scholar 

  62. Cioslowski J, Hamilton T, Scuseria G, Hess BA Jr, Hu J, Schaad LJ, Dupuis M (1990) J Am Chem Soc 112:4183–4186

    Article  CAS  Google Scholar 

  63. Oliveira BG, Araújo RCMU, Ramos MN (2010) J Mol Struct THEOCHEM 944:168–172

    Article  CAS  Google Scholar 

  64. Talaty ER, Simons G (1978) Theor Chim Acta 48:331–335

    Google Scholar 

  65. Grigorenko BL, Nemukhin AV, Apkarian VA (1997) J Chem Phys 108:4413–4425

    Article  Google Scholar 

  66. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery Jr JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Rega N, Salvador P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98W, revision A.1. Gaussian Inc., Pittsburgh

  67. Cioslowski J (1992) Chem Phys Lett 194:73–78

    Article  CAS  Google Scholar 

  68. Cioslowski J (1992) Chem Phys Lett 219:151–154

    Article  Google Scholar 

  69. Cioslowski J, Nanayakkara A, Challacombe M (1993) Chem Phys Lett 203:137–142

    Article  CAS  Google Scholar 

  70. Biegler-König F (2002) AIM 2000 1.0 program. University of Applied Sciences, Bielefeld

  71. Gilli P, Bertolasi V, Ferretti V, Gilli G (1994) J Am Chem Soc 116:909–915

    Article  CAS  Google Scholar 

  72. Grabowski SJ, Sokalski WZ, Leszczynski J (2006) J Phys Chem A 110:4772–4779

    Article  CAS  Google Scholar 

  73. Oliveira BG, Santos ECS, Duarte EM, Araújo RCMU, Ramos MN, Carvalho AB (2004) Spectrochim Acta A 60:1883–1887

    Article  CAS  Google Scholar 

  74. Oliveira BG, Duarte EM, Araújo RCMU, Ramos MN, Carvalho AB (2005) Spectrochim Acta A 61:491–494

    Article  CAS  Google Scholar 

  75. Oliveira BG, Araújo RCMU, Ramos MN, Carvalho AB (2007) J Theor Comput Chem 6:647–660

    Article  Google Scholar 

  76. Grabowski SJ (2009) Croat Chim Acta 82:185–192

    Google Scholar 

  77. Majerz I (2007) Mol Phys 105:2305–2314

    Article  CAS  Google Scholar 

  78. Martin TW, Derewenda ZS (1999) Nat Struct Biol 6:403–406

    Article  CAS  Google Scholar 

  79. Oliveira BG, Araújo RCMU, Ramos MN, Carvalho AB (2007) Quim Nova 30:1167–1170

    Article  CAS  Google Scholar 

  80. Van Meerssche M, Feneau-Dupont J (1976) Introduction à la cristallographie et à la chimie structurale. Oyez é editeur, Leuven

  81. Oliveira BG, Vasconcellos MLAA (2009) Acta Chim Slov 56:340–344

    Google Scholar 

  82. Oliveira BG, Araújo RCMU, Carvalho AB, Ramos MN (2007) Spectrochim Acta A 68:626–631

    Article  CAS  Google Scholar 

  83. Pople JA, Frisch MJ, Del Bene JE (1982) Chem Phys Lett 91:185–189

    Article  CAS  Google Scholar 

  84. Araújo RCMU, Silva JBP, Ramos MN (1995) Spectrochim Acta A 51:821–830

    Article  Google Scholar 

  85. Araújo RCMU, Ramos MN (1996) J Mol Struct THEOCHEM 366:233–240

    Article  Google Scholar 

  86. Deakyne CA, Cravero JP, Hobson WS (1984) J Phys Chem 88:5975–5981

    Article  CAS  Google Scholar 

  87. Parra RD, Bulusu S, Zeng XC (2003) J Chem Phys 118:3499–3509

    Article  CAS  Google Scholar 

  88. Karpfen A (1997) Molecular interactions. Wiley, New York

  89. King BF, Weinhold F (1995) J Chem Phys 103:333–348

    Article  CAS  Google Scholar 

  90. Suhai S (1994) J Chem Phys 101:9766–9783

    Article  CAS  Google Scholar 

  91. Berashevich JA, Chakraborty T (2007) Chem Phys Lett 446:159–164

    Article  CAS  Google Scholar 

  92. Oliveira BG, Araújo RCMU (2007) Quim Nova 30:791–796

    Article  CAS  Google Scholar 

  93. Ratajczak H (1972) J Phys Chem 76:3000–3004

    Article  CAS  Google Scholar 

  94. Ratajczak H, Orville-Thomas WJ (1975) J Mol Struct 26:387–391

    Article  CAS  Google Scholar 

  95. Allen AC (1975) Proc Nat Acad Sci USA 72:4701–4705

    Article  CAS  Google Scholar 

  96. Nesbitt DJ (1988) Chem Rev 88:843–870

    Article  CAS  Google Scholar 

  97. Swanepoel J, Heyns AM (1990) Spectrochim Acta A 46:1629–1638

    Article  Google Scholar 

  98. Araújo RCMU, Ramos MN (1998) J Braz Chem Soc 9:499–505

    Article  Google Scholar 

  99. Oliveira BG, Araújo RCMU, Ramos MN (20097) J Mol Struct THEOCHEM 908:79-83

  100. Hobza P, Havlas Z (2000) Chem Rev 100:4253–4264

    Article  CAS  Google Scholar 

  101. Biswal HS, Chakraborty S, Wategaonkar S (2008) J Chem Phys 129:184317–184321

    Article  CAS  Google Scholar 

  102. Rozenberg M, Loewenschuss A, Marcus Y (2000) Phys Chem Chem Phys 2:2699–2702

    Article  CAS  Google Scholar 

  103. Dinadayalane TC, Leszczynski J (2009) J Chem Phys 130:81101–81105

    Article  CAS  Google Scholar 

  104. Cézard C, Rice CA, Suhm MA (2006) J Phys Chem A 110:9839–9848

    Article  CAS  Google Scholar 

  105. Borowski P, Pilorz K, Pitucha M (2010) Spectrochim Acta A 75:1470–1475

    Article  CAS  Google Scholar 

  106. Freed KF (1971) Ann Rev Phys Chem 22:313–346

    Google Scholar 

  107. Bader RFW (2009) J Phys Chem A 113:10391–10396

    Article  CAS  Google Scholar 

  108. Bader RFW (1998) J Phys Chem A 102:7314–7323

    Article  CAS  Google Scholar 

  109. Bader RFW (1991) Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  110. Bader RFW, Beddall PM, Peslak J Jr (1973) J Chem Phys 58:557–566

    Article  CAS  Google Scholar 

  111. Vila A, Mosquera RA (2007) Chem Phys Lett 443:22–28

    Article  CAS  Google Scholar 

  112. Gnecco D, Laura Orea F, Galindo A, Enríquez RG, Toscano RA, Reynolds WR (2000) Molecules 5:998–1003

    Article  CAS  Google Scholar 

  113. Watson IDG, Yudin AK (2003) J Org Chem 68:5160–5167

    Article  CAS  Google Scholar 

  114. Hu XE (2004) Tetrahedron 60:2701–2743

    Article  CAS  Google Scholar 

  115. Schneider C (2009) Angew Chem Int Ed 48:2082–2084

    Article  CAS  Google Scholar 

  116. Seki K, Yu R, Yamazaki Y, Yamashita Y, Kobayashi S (2009) Chem Commun 5722–5724

  117. Giguere PA, Turrell S (1980) J Am Chem Soc 102:5473–5477

    Article  CAS  Google Scholar 

  118. Tamamura H, Yamashita M, Muramatsu H, Ohno H, Ibuka T, Otaka A, Fujii N (1997) Chem Comm 3227–3228

  119. Oliveira BG, Vasconcellos MLAA, Olinda RR, Filho EBA (2009) Struct Chem 20:897–902

    Article  CAS  Google Scholar 

  120. Babkov LM, Baran J, Davydova NA, Uspenskiy KE (2006) J Mol Struct 792–793:68–72

    Article  CAS  Google Scholar 

  121. Dimitrova Y (2004) Spectrochim Acta A 60:3049–3057

    Article  CAS  Google Scholar 

  122. Grabowski SJ (2000) J Mol Struct 553:151–156

    Article  CAS  Google Scholar 

  123. Grabowski SJ (2001) J Mol Struct 562:137–143

    Article  CAS  Google Scholar 

  124. Wojtulewski S, Grabowski SJ (2002) J Mol Struct 605:235–240

    Article  CAS  Google Scholar 

  125. Wojtulewski S, Grabowski SJ (2003) Chem Phys Lett 378:388–394

    Article  CAS  Google Scholar 

  126. Savatinova I, Anachkova E (1983) Phys Stat Solidi 120:539–545

    Google Scholar 

  127. Unterderweide K, Engelen B, Boldt K (1994) J Mol Struct 322:233–239

    Article  CAS  Google Scholar 

  128. Oliveira BG, Araújo RCMU, Ramos MN (2010) Quim Nova 33:1155–1162

    Article  CAS  Google Scholar 

  129. Koritsanszky T (2006) Chapter 12. In: Hydrogen bonds—new insights. Springer, Berlin, pp 441–470

  130. Herrebout WA, Stolov AA, van der Veken BJ (2001) J Mol Struct 563–564:221–226

    Article  Google Scholar 

  131. Parra RD, Furukawa M, Gong B, Zeng XC (2001) J Chem Phys 115:6030–6035

    Article  CAS  Google Scholar 

  132. Araújo RCMU, Soares VM, Oliveira BG, Lopes KC, Ventura E, do Monte SA, Santana OL, Carvalho AB, Ramos MN (2006) Int J Quantum Chem 106:2714–2722

    Article  CAS  Google Scholar 

  133. Van Duijneveldt FB, van Duijneveldt-van de Rijdt JGCM, van Lenthe JH (1994) Chem Rev 94:1873–1885

    Article  Google Scholar 

  134. Oliveira BG, Araújo RCMU, Leite ES, Ramos MN (2011) Int J Quantum Chem 111:111–116

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Brazilian funding agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boaz G. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, B.G., Araújo, R.C.M.U., Carvalho, A.B. et al. Hydrogen bonds determine the structures of the ternary heterocyclic complexes C2H4O···2HF, C2H5N···2HF and C2H4S···2HF: density functional theory and topological calculations. J Mol Model 17, 2847–2862 (2011). https://doi.org/10.1007/s00894-011-0969-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-0969-8

Keywords

Navigation