Skip to main content
Log in

Understanding structural/functional properties of amidase from Rhodococcus erythropolis by computational approaches

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The 3D structure of the amidase from Rhodococcus erythropolis (EC 3.5.1.4) built by homology-based modeling is presented. Propionamide and acetamide are docked to the amidase. The reaction models were used to characterize the explicit enzymatic reaction. The calculated free energy barrier at B3LYP/6-31G* level of Model A (Ser194 + propionamide) is 19.72 kcal mol−1 in gas (6.47 kcal mol−1 in solution), and of Model B (Ser194 + Gly193 + propionamide) is 18.71 kcal mol−1 in gas (4.57 kcal mol−1 in solution). The docking results reveal that propionamide binds more strongly than acetamide due to the ethyl moiety of propionamide, which makes the carboxyl oxygen center of the substrate slightly more negative, making formation of the positively charged tetrahedral intermediate slightly easier. The quantum mechanics results demonstrate that Ser194 is essential for the acyl-intermediate, and Gly193 plays a secondary role in stabilizing acyl-intermediate formation as the NH groups of Ser194 and Gly193 form hydrogen bonds with the carbonyl oxygen of propionamide. The new structural and mechanistic insights gained from this computational study should be useful in elucidating the detailed structures and mechanisms of amidase and other homologous members of the amidase signature family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hashimoto Y, Nishiyama M, Ikehata O, Horinouchi S, Beppu T (1990) Biochim Biophys Acta 1088:225–233

    Google Scholar 

  2. Mayaux JF, Cerbelaud E, Soubrier F, Faucher D, Petre D (1990) J Bacteriol 172:6764–6773

    CAS  Google Scholar 

  3. Skouloubris S, Labigne AH, Reuse HD (2001) Mol Microbiol 40:596–609, doi:10.1046/j.1365-2958.2001.02400.x

    Article  CAS  Google Scholar 

  4. Vliet AHMV, Stoof J, Poppelaars SW, Bereswill S, Homuth G, Kist M et al (2003) J Biol Chem 278:9052–9057, doi:10.1074/jbc.M207542200

    Article  Google Scholar 

  5. Patricelli MP, Cravatt BF (2000) J Biol Chem 275:19177–19184, doi:10.1074/jbc.M001607200

    Article  CAS  Google Scholar 

  6. Shin S, Yun SY, Koo HM, Kim YS, Choi KY, Oh BH (2003) J Biol Chem 278:24937–24943, doi:10.1074/jbc.M302156200

    Article  CAS  Google Scholar 

  7. Shin S, Lee TH, Ha NC, Koo HMS, Kim Y, Lee H-S et al (2002) EMBO J 21:2509–2516, doi:10.1093/emboj/21.11.2509

    Article  CAS  Google Scholar 

  8. Labahn J, Neumann S, Buldt G, Kula MR, Granzin J (2002) J Mol Biol 322:1053–1106, doi:10.1016/S0022-2836(02)00886-0

    Article  CAS  Google Scholar 

  9. Nakamura A, Yao M, Chimnaronk S, Sakai N, Tanaka I (2006) Science 312:1954–1968, doi:10.1126/science.1127156

    Article  CAS  Google Scholar 

  10. Altschul SF, Madden TL, Schäfer AA, Zhang JZ, Miller DJ (1997) Nucleic Acids Res 25:3389–3402, doi:10.1093/nar/25.17.3389

    Article  CAS  Google Scholar 

  11. Montgomerie S, Cruz JA, Shrivastava S, Arndt D, Berjanskii M, Wishart DS (2008) Nucleic Acids Res 36:W202–W209

    Google Scholar 

  12. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9, University of California, San Francisco

  13. Jorgensen MJ, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935, doi:10.1063/1.445869

    Article  CAS  Google Scholar 

  14. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092, doi:10.1063/1.464397

    Article  CAS  Google Scholar 

  15. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341, doi:10.1016/0021-9991(77)90098-5

    Article  CAS  Google Scholar 

  16. Luthy RA, MacArthur MW, Moss S, Thornton JM (1993) J Appl Cryst 26:283–291, doi:10.1107/S0021889892009944

    Article  Google Scholar 

  17. Huey H, Morris GM, Olson AJ, Goodsell DH (2007) J Comput Chem 28:1145–1152, doi:10.1002/jcc.20634

    Article  CAS  Google Scholar 

  18. Kravitz JY, Pecoraro V, Carlson HA (2005) J Chem Theory Comput 1:1265–1274, doi:10.1021/ct050132o

    Article  CAS  Google Scholar 

  19. Velichkova P, Himo F (2005) J Phys Chem B 109:8216–8219, doi:10.1021/jp0443254

    Article  CAS  Google Scholar 

  20. Wang JY, Dong H, Li SH, He HW (2005) J Phys Chem B 109:18644–18672

    Google Scholar 

  21. Li A-J, Nussinov R (1998) Proteins 32:111–127, doi:10.1002/(SICI)1097-0134(19980701)32:1<111::AID-PROT12>3.0.CO;2-H

    Article  CAS  Google Scholar 

  22. Pham TC, Kriwacki RW, Parrill AL (2007) Biopolymers 86:298–310, doi:10.1002/bip.20745

    Article  CAS  Google Scholar 

  23. Claiborne A, Yeh JI, Mallett TC, Luba J, Crane EJ, Charrier V et al (1999) Biochemistry 38:15407–15416, doi:10.1021/bi992025k

    Article  CAS  Google Scholar 

  24. Warshel A, Naray-Szabo G, Sussman F, Hwang J-K (1989) Biochemistry 28:3629–3637, doi:10.1021/bi00435a001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (20333050, 20673044), Doctor Foundation by the Ministry of Education, and Foundation for University Key Teacher by the Ministry of Education, Key subject of Science and Technology by the Ministry of Education of China, and Key subject of Science and Technology by Jilin Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ze-Sheng Li or Yan Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, WW., Wang, Y., Zhou, YH. et al. Understanding structural/functional properties of amidase from Rhodococcus erythropolis by computational approaches. J Mol Model 15, 481–487 (2009). https://doi.org/10.1007/s00894-008-0406-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0406-9

Keywords

Navigation