Skip to main content
Log in

Morphological and functional abnormalities of hippocampus in APC1638T/1638T mice

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

In the present study, we examined morphology and function of hippocampus in the APC1638T/1638T mouse. Expression levels of the APC mRNA and protein were both identical in the hippocampus of the APC+/+ and APC1638T/1638T mice. The dentate gyrus of the APC1638T/1638T hippocampus was thicker, and has more densely-populated granule cells in the APC1638T/1638T mouse hippocampus. Immunoelectron microscopy revealed co-localization of APC with alpha-amino-3- hydroxy-5-methyl- isoxazole-4-propionate receptor (AMPA-R) and with PSD-95 at post-synapse in the APC+/+ hippocampus, while APC1638T was co-localized with neither AMPA-R nor PSD-95 in the APC1638T/1638T hippocampus. By immunoprecipitation assay, full-length APC expressed in the APC +/+ mouse was co-immunoprecipitated with AMPA-R and PSD-95. In contrast, APC1638T expressed in the APC1638T/1638T mouse was not co-immunoprecipitated with AMPA-R and PSD-95. In the hippocampal CA1 region of the APC1638T/1638T mouse, c-Fos expression after electric foot shock was decreased compared with the APC+/+ mouse. The present study showed some abnormalities on morphology of the hippocampus caused by a truncated APC (APC1638T). Also, our findings suggest that failure in APC binding to AMPA-R and PSD-95 may bring about less activities of hippocampal neurons in the APC1638T/1638T mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hedge P, McKechnie D, Finniear R, Markham A, Groffen J, Boguski MS, Altschul SF, Horii A, Ando H, Miyoshi Y, Miki Y, Nishisho I, Nakamura Y (1991) Identification of FAP locus genes from chromosome 5q21. Science 253(5020):661–665

    Article  CAS  Google Scholar 

  2. Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, Joslyn G, Stevens J, Spirio L, Robertson M, Sargeant L, Krapcho K, Wolff E, Burt R, Hughes JP, Warrington J, Mcphherson J, Wasmuth J, Paslier DL, Abderrahim H, Cohen D, Leppert M, White R (1991) Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66(3):589–600

    Article  CAS  Google Scholar 

  3. Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, Koyama K, Utsunomiya J, Baba S, Hedge P (1991) Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253(5020):665–669

    Article  CAS  Google Scholar 

  4. Fodde R, Kuipers J, Rosenberg C, Smits R, Kielman M, Gaspar C, van Es JH, Breukel C, Wiegant J, Giles RH, Clevers H (2001) Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol 3(4):433–438

    Article  CAS  Google Scholar 

  5. Senda T, Iizuka-Kogo A, Onouchi T, Shimomura A (2007) Adenomatous polyposis coli (APC) plays multiple roles in the intestinal and colorectal epithelia. Med Mol Morphol 40(2):68–81

    Article  Google Scholar 

  6. Fodde R (2003) The multiple functions of tumour suppressors: it’s all in APC. Nat Cell Biol 5(3):190–192

    Article  CAS  Google Scholar 

  7. Midgley CA, White S, Howitt R, Save V, Dunlop MG, Hall PA, Lane DP, Wyllie AH, Bubb VJ (1997) APC expression in normal human tissues. The Journal of pathology 181(4):426–433

    Article  CAS  Google Scholar 

  8. Bhat RV, Baraban JM, Johnson RC, Eipper BA, Mains RE (1994) High levels of expression of the tumor suppressor gene APC during development of the rat central nervous system. J Neurosci 14(5 Pt 2):3059–3071

    Article  CAS  Google Scholar 

  9. Hamilton SR, Liu B, Parsons RE, Papadopoulos N, Jen J, Powell SM, Krush AJ, Berk T, Cohen Z, Tetu B, Burger PC, Wood PA, Taqi F, Booker SV, Petersen GM, Offerhaus GJA, Tersmette AC, Giardiello FM, Vogelstein B, Kinzler KW (1995) The molecular basis of Turcot’s syndrome. N Engl J Med 332(13):839–847

    Article  CAS  Google Scholar 

  10. Senda T, Iino S, Matsushita K, Matsumine A, Kobayashi S, Akiyama T (1998) Localization of the adenomatous polyposis coli tumour suppressor protein in the mouse central nervous system. Neuroscience 83(3):857–866

    Article  CAS  Google Scholar 

  11. Shimomura A, Kohu K, Akiyama T, Senda T (2005) Subcellular localization of the tumor suppressor protein APC in developing cultured neurons. Neurosci Lett 375(2):81–86

    Article  CAS  Google Scholar 

  12. Takamori N, Shimomura A, Senda T (2006) Microtubule-bundling activity of APC is stimulated by interaction with PSD-95. Neurosci Lett 403(1–2):68–72

    Article  CAS  Google Scholar 

  13. Shimomura A, Ohkuma M, Iizuka-Kogo A, Kohu K, Nomura R, Miyachi E, Akiyama T, Senda T (2007) Requirement of the tumour suppressor APC for the clustering of PSD-95 and AMPA receptors in hippocampal neurons. Eur J Neurosci 26(4):903–912

    Article  Google Scholar 

  14. Smits R, Kielman MF, Breukel C, Zurcher C, Neufeld K, Jagmohan-Changur S, Hofland N, van Dijk J, White R, Edelmann W, Kucherlapati R, Khan PM, Fodde R (1999) Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev 13(10):1309–1321

    Article  CAS  Google Scholar 

  15. Onouchi T, Kobayashi K, Sakai K, Shimomura A, Smits R, Sumi-Ichinose C, Kurosumi M, Takao K, Nomura R, Iizuka-Kogo A, Suzuki H, Kondo K, Akiyama T, Miyakawa T, Fodde R, Senda T (2014) Targeted deletion of the C-terminus of the mouse adenomatous polyposis coli tumor suppressor results in neurologic phenotypes related to schizophrenia. Mol Brain 7:21

    Article  Google Scholar 

  16. Schaeren-Wiemers N, Gerfin-Moser A (1993) A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 100(6):431–440

    Article  CAS  Google Scholar 

  17. Nagano M, Adachi A, Masumoto KH, Meyer-Bernstein E, Shigeyoshi Y (2009) rPer1 and rPer2 induction during phases of the circadian cycle critical for light resetting of the circadian clock. Brain Res 1289:37–48

    Article  CAS  Google Scholar 

  18. Kim E, Niethammer M, Rothschild A, Jan YN, Sheng M (1995) Clustering of shaker-type K + channels by interaction with a family of membrane-associated guanylate kinases. Nature 378(6552):85–88

    Article  CAS  Google Scholar 

  19. Kornau HC, Schenker LT, Kennedy MB, Seeburg PH (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269(5231):1737–1740

    Article  CAS  Google Scholar 

  20. Fleischmann A, Hvalby O, Jensen V, Strekalova T, Zacher C, Layer LE, Kvello A, Reschke M, Spanagel R, Sprengel R, Wagner EF, Gass P (2003) Impaired long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity in mice lacking c-Fos in the CNS. J Neurosci 23(27):9116–9122

    Article  CAS  Google Scholar 

  21. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660

    Article  CAS  Google Scholar 

  22. Ehninger D, Kempermann (2008) Neurogenesisi in the adult hippocampus. Cell Tissue Res 331:243–250

    Article  Google Scholar 

  23. Wang T, Onouchi T, Yamada NO, Matsuda S, Senda T (2017) A disturbance of intestinal epithelial cell population and kinetics in APC1638T mice. Med Mol Morphol 50(2):94–102

    Article  CAS  Google Scholar 

  24. Munemitsu S, Souza B, Müller O, Albert I, Rubinfeld B, Polakis P (1994) The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res 54(14):3676–3681

    CAS  PubMed  Google Scholar 

  25. Zumbrunn J, Kinoshita K, Hyman AA, Näthke IS (2001) Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 beta phosphorylation. Curr Biol 11(1):44–49

    Article  CAS  Google Scholar 

  26. Tanaka EM, Kirschner MW (1991) Microtubule behavior in the growth cones of living neurons during axon elongation. The Journal of cell biology 115(2):345–363

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Yamaguchi (Gifu University) for technical advices, and Dr. Wenduerma (Gifu University) for technical assistance. This study was supported in part by grants-in aid for science research from the Ministry of Education, Science, Sports and Culture of Japan to T.S. (Grant No. 18K06827) and T.O. (Grant No. 18K14843), and from the Kazato Research Foundation to T.O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Senda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 138 kb)

Supplementary material 2 (PDF 413 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Onouchi, T., Hirayama, M. et al. Morphological and functional abnormalities of hippocampus in APC1638T/1638T mice. Med Mol Morphol 54, 31–40 (2021). https://doi.org/10.1007/s00795-020-00257-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-020-00257-3

Keywords

Navigation