Skip to main content
Log in

Development and endoscopic appearance of colorectal tumors are characterized by the expression profiles of miRNAs

  • Review
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Accumulating data indicates that certain microRNAs (miRNAs or miRs) are differently expressed in samples of tumors and paired non-tumorous samples taken from the same patients with colorectal tumors. We previously reported to clarify the relationship between the expression of the miRNAs and the endoscopic morphological appearance of the colorectal tumors. In this report, we focused on colorectal adenoma (tubular or tubulovillous adenoma), or tubular early carcinoma or type 2 adenocarcinoma, familial adenomatous polyposis (FAP), ulcerative colitis-associated tumor (UCAT), and sessile serrated adenoma/polyp (SSA/P). We tried to clarify the relationship between the expression of the miRNAs and the colorectal tumor development. The expression levels of miR-143, -145, and -34a were reduced in most of the polypoid and FAP tumors compared with those in the flat elevated, UCAT, SSA/P ones. In type 2 adenocarcinomas, the expression profile of these miRNAs was similar to those of the polypoid and FAP tumors. The expression levels of miR-7 and -21 were up-regulated in non-granular type of laterally spreading tumor, UCAT, and SSA/P compared with those in polypoid and FAP tumors. These findings indicated that the expression of onco-related miRNAs was closely associated with the development and endoscopic appearance of colorectal tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lee RC, Feinbaum RL. Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  2. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  PubMed  CAS  Google Scholar 

  3. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  PubMed  CAS  Google Scholar 

  4. Croce CM, Calin GA (2005) miRNAs, cancer, and stem cell division. Cell 122:6–7

    Article  PubMed  CAS  Google Scholar 

  5. Gregory RI, Shiekhattar R (2005) MicroRNA biogenesis and cancer. Cancer Res 65:3509–3512

    Article  PubMed  CAS  Google Scholar 

  6. Akao Y, Nakagawa Y, Hirata I, Iio A, Itoh T, Kojima K, Nakashima R, Kitade Y, Naoe T (2010) Role of anti-oncomirs miR-143 and -145 in human colorectal tumors. Cancer Gene Ther 17:398–408

    Article  PubMed  CAS  Google Scholar 

  7. Nakagawa Y, Akao Y, Taniguchi K, Kamatani A, Tahara T, Kamano T, Nakano N, Komura N, Ikuno H, Ohmori T, Jodai Y, Miyata M, Nagasaka M, Shibata T, Ohmiya N, Hirata I (2015) Relationship between expression of onco-related miRNAs and the endoscopic appearance of colorectal tumors. Int J Mol Sci 16:1526–1543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Akao Y, Noguchi S, Iio A, Kojima K, Takagi T, Naoe T (2011) Dysregulation of microRNA-34a expression causes drug-resistance to 5-FU in human colon cancer DLD-1 cells. Cancer Lett 300:197–204

    Article  PubMed  CAS  Google Scholar 

  9. Tuchiya N, Nakagama H (2010) MicroRNA, SND1, and alterations in translational regulation in colon carcinogenesis. Mutat Res 693:94–100

    Article  CAS  Google Scholar 

  10. Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DL, Au GK, Liu CG, Calin GA, Croce CM, Harris CC (2008) MicroRNA expression profile associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299:425–436

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Xiong B, Cheng Y, Ma L, Zhang C (2013) MiR-21 regulates biological behavior through the PTEN/PI-3K/Akt signaling pathway in human colorectal cancer cells. Int J Oncol 42:219–228

    Article  PubMed  CAS  Google Scholar 

  12. Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, Li Y (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27:4373–4379

    Article  PubMed  CAS  Google Scholar 

  13. Ahmed FE, Ahmed NC, Vos PW, Bonnerup C, Atkins JN, Casey M, Nuovo GJ, Naziri W, Wiley JE, Mota H, Allison RR (2013) Diagnostic microRNA markers to screen for sporadic human colon cancer in stool: I. Proof of principle. Cancer Genom Proteom 10:93–113

    CAS  Google Scholar 

  14. Zhang N, Li X, Wu CW, Dong Y, Cai M, Mok MT, Wang H, Chen J, Ng SS, Chen M, Sung JJ, Yu J (2013) MicroRNA-7 is a novel inhibitor of YY1 contributing to colorectal tumorigenesis. Oncogene 32:5078–5088

    Article  PubMed  CAS  Google Scholar 

  15. Michael MZ, O’Connor SM, van Holst Pellekaan NG, Young GP, James RJ (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1:882–891

    PubMed  CAS  Google Scholar 

  16. Minamoto T, Sawaguchi K, Mai M, Yamashita N, Sugimura T, Esumi H (1994) Infrequent K-Ras activation in superficial-type (flat) colorectal adenomas and adenocarcinomas. Cancer Res 54:2841–2844

    PubMed  CAS  Google Scholar 

  17. Fujimori T, Satonaka K, Yamamura-Idei Y, Nagasako K, Maeda S (1994) Non-involvement of Ras mutations in flat colorectal adenomas and carcinomas. Int J Cancer 57:51–55

    Article  PubMed  CAS  Google Scholar 

  18. Shirai H, Ueno E, Osaki M, Tatebe S, Ito H, Kaibara N (1995) Expression of growth factor and their receptors in human early colorectal carcinomas: immunohistochemical study. Anticancer Res 15:2889–2894

    PubMed  CAS  Google Scholar 

  19. Sada M, Mitomi H, Igarashi M, Katsumata T, Saigenji K, Okayasu I (1999) Cell kinetics, p53 and Bcl-2 expression, and c-Ki-Ras mutations in flat-elevated tubulovillous adenomas and adenocarcinomas of the colorectum: comparison with polypoid lesions. Scand J Gastroenterol 34:798–807

    Article  PubMed  CAS  Google Scholar 

  20. Kudo S, Kashida H, Nakajima T, Tamura S, Nakajo K (1997) Endoscopic diagnosis and treatment of early colorectal cancer. World J Surg 21:694–701

    Article  PubMed  CAS  Google Scholar 

  21. Tamura S, Onishi S (2004) Laterally spreading colon cancer. N Engl J Med 351:e24

    Article  PubMed  Google Scholar 

  22. Uraoka T, Saito Y, Matsuda T, Ikehara H, Gotoda T, Saito D, Fujii T (2006) Endoscopic indication for endoscopic mucosal resection of laterally spreading tumors in the colorectum. Gut 55:1592–1597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Scarpa M, Castagliuolo I, Castoro C, Pozza A, Scarpa M, Kotsafti A, Angriman I (2014) Inflammatory colonic carcinogenesis: a review on pathogenesis and immunosurveillance mechanisms in ulcerative colitis. World J Gastroenterol 20:6774–6785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Saraggi D, Fassan M, Mescoli C, Scarpa M, Valeri N, Michielan A, D’Incá R, Rugge M (2016) The molecular landscape of colitis-associated carcinogenesis. Dig Liver Dis 49:326–330

    Article  PubMed  CAS  Google Scholar 

  25. Kobayashi K, Tomita H, Shimizu M, Tanaka T, Suzui N, Miyazaki T, Hara A (2017) p53 expression as a diagnostic biomarker in ulcerative colitis-associated cancer. Int J Mol Sci 18:E1284

    Article  PubMed  Google Scholar 

  26. Fujita K, Yamamoto H, Matsumoto T, Hirahashi M, Gushima M, Kishimoto J, Nishiyama K, Taguchi T, Yao T, Oda Y (2011) Sessile serrated adenoma with early neoplastic progression: a clinicopathologic and molecular study. Am J Surg Pathol 35:295–304

    Article  PubMed  Google Scholar 

  27. Bettington M, Walker N, Rosty C, Brown I, Clouston A, McKeone D, Pearson SA, Leggett B, Whitehall V (2017) Clinicopathological and molecular features of sessile serrated adenomas with dysplasia or carcinoma. Gut 66:97–106

    Article  PubMed  CAS  Google Scholar 

  28. Japanese Society for Cancer of the Colon and Rectum (2013) In Japanese Classification of Colorectal Carcinoma, 8th edn. Kanehara Shuppan, Tokyo

    Google Scholar 

  29. Akao Y, Nakagawa Y, Kitade Y, Kinoshita T, Naoe T (2007) Down-regulation of microRNAs-143 and -145 in B-cell malignancies. Cancer Sci 98:1914–1920

    Article  PubMed  CAS  Google Scholar 

  30. Nakagawa Y, Iinuma M, Naoe T, Nozawa Y, Akao Y (2007) Characterized mechanism of α-mangostin-induced cell death: Caspase-independent apoptosis with release of endonuclease-G from mitochondria and increased miR-143 expression in human colorectal cancer DLD-1 cells. Bioorg Med Chem 15:5620–5628

    Article  PubMed  CAS  Google Scholar 

  31. Takagi T, Iio A, Nakagawa Y, Naoe T, Tanigawa N, Akao Y (2009) Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncology 77:12–21

    Article  PubMed  CAS  Google Scholar 

  32. Iio A, Nakagawa Y, Hirata I, Naoe T, Akao Y (2010) Identification of non-coding RNAs embracing microRNA-143/145 cluster. Mol Cancer 9:136–142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Chen Z, Zeng H, Guo Y, Liu P, Pan H, Deng A, Hu J (2010) miRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-myc. J Exp Clin Cancer Res 29:151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. English JM, Pearson G, Baer R, Cobb MH (1998) Identification of substrates and regulators of the mitogen-activated protein kinase ERK5 using chimeric protein kinases. J Biol Chem 73:3854–3860

    Article  Google Scholar 

  35. Rothberg PG (1987) The role of the oncogene c-myc in sporadic large bowel cancer and familial polyposis coli. Semin Surg Oncol 3:152–158

    Article  PubMed  CAS  Google Scholar 

  36. Hashimoto K, Nakagawa Y, Morikawa H, Niki M, Egashira Y, Hirata I, Katsu K, Akao Y (2001) Co-overexpression of DEAD box protein rck/p54 and c-myc protein in human colorectal adenomas and the relevance of their expression in cultured cell lines. Carcinogenesis 22:1965–1970

    Article  PubMed  CAS  Google Scholar 

  37. Akao Y, Kumasaki M, Shinohara H, Sugito N, Kuranaga Y, Tsujino T, Yoshikawa Y, Kitade Y (2018) Impairment of K-Ras signaling networks and increased efficacy of EGFR inhibitors by a novel synthetic miR-143. Cancer Sci (in press)

  38. Su J, Liang H, Yao W, Wang N, Zhang S, Yan X, Feng H, Pang W, Wang Y, Wang X, Fu Z, Liu Y, Zhao C, Zhang J, Zhang CY, Zen K, Chen X, Wang Y (2014) MiR-143 and MiR-145 regulate IGF1R to suppress cell proliferation in colorectal cancer. PLoS One 9:e114420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Siemens H, Jackstadt R, Kaller M, Hermeking H (2013) Repression of c-Kit by p53 is mediated by miR-34 and is associated with reduced chemoresistance, migration and stemness. Oncotarget 4:1399–1415

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nagano Y, Toiyama Y, Okugawa Y, Imaoka H, Fujikawa H, Yasuda H, Yoshiyama S, Hiro J, Kobayashi M, Ohi M, Araki T, Inoue Y, Mohri Y, Kusunoki M (2016) MicroRNA-7 Is associated with malignant potential and poor prognosis in human colorectal cancer. Anticancer Res 36:6521–6526

    Article  PubMed  CAS  Google Scholar 

  41. Vicinus B, Rubie C, Stegmaier N, Frick VO, Kölsch K, Kauffels A, Ghadjar P, Wagner M, Glanemann M (2013) miR-21 and its target gene CCL20 are both highly overexpressed in the microenvironment of colorectal tumors: significance of their regulation. Oncol Rep 30:1285–1292

    Article  PubMed  Google Scholar 

  42. Kinzier KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170

    Article  Google Scholar 

  43. Senda T, Shimomura A, Iizuka-Koga A (2005) Adenomatous polyposis coli (Apc) tumor suppressor gene as a multifunctional gene. Anat Sci Int 80:121–131

    Article  PubMed  CAS  Google Scholar 

  44. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  PubMed  CAS  Google Scholar 

  45. Muto T, Nagawa H, Watanabe T, Masaki T, Sawada T (1997) Colorectal carcinogenesis: Historical review. Dis Colon Rectum 40:S80–S85

    Article  PubMed  CAS  Google Scholar 

  46. Mukawa K, Fujii S, Takeda J, Kitajima K, Tominaga K, Chibana Y, Fujita M, Ichikawa K, Tomita S, Ono Y, Imura J, Kawamata H, Chiba T, Hiraishi H, Terano A, Fujimori T (2005) Analysis of K-Ras mutations and expression of cyclooxygenase-2 and gastrin protein in laterally spreading tumors. J Gastroenterol Hepatol 20:1584–1590

    Article  PubMed  CAS  Google Scholar 

  47. Hiraoka S, Kato J, Tatsukawa M, Harada K, Fujita H, Morikawa T, Shiraha H, Shiratori Y (2006) Laterally spreading type of colorectal adenoma exhibits a unique methylation phenotype and K-Ras mutations. Gastroenterology 131:379–389

    Article  PubMed  CAS  Google Scholar 

  48. Teixeira CR, Tanaka S, Haruma K, Yoshihara M, Sumii K, Kajiyama G, Shimamoto F (1996) Flat-elevated colorectal neoplasms exhibit a high malignant potential. Oncology 53:89–93

    Article  PubMed  CAS  Google Scholar 

  49. Zauber AG, Winawer SJ, O’Brien MJ, Lansdorp VI, Ballegooijen MV, Hankey BF, Shi W, Bond JH, Schapiro M, Joel F, Panish JF, Stewart ET, Waye JD (2012) Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths. N Engl J Med 366:687–696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Nagel R, le Sage C, Diosdado B, van der Waal M, Oude Vrielink JA, Bolijn A, Meijer GA, Agami R (2008) Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res 68:5795–5802

    Article  PubMed  CAS  Google Scholar 

  51. Liao WT, Ye YP, Zhang NJ, Li TT, Wang SY, Cui YM, Qi L, Wu P, Jiao HL, Xie YJ, Zhang C, Wang JX, Ding YQ (2014) MicroRNA-30b functions as a tumour suppressor in human colorectal cancer by targeting KRAS, PIK3CD and BCL2. J Pathol 232:415–427

    Article  PubMed  CAS  Google Scholar 

  52. Chai J, Wang S, Han D, Dong W, Xie C, Guo H (2015) MicroRNA-455 inhibits proliferation and invasion of colorectal cancer by targeting RAF proto-oncogene serine/threonine-protein kinase. Tumour Biol 36:1313–1321

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Fujita Health University and the staff of the Gastroenterology Department of Fujita Heath University and by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihito Nakagawa.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakagawa, Y., Akao, Y., Tahara, T. et al. Development and endoscopic appearance of colorectal tumors are characterized by the expression profiles of miRNAs. Med Mol Morphol 51, 82–88 (2018). https://doi.org/10.1007/s00795-018-0186-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-018-0186-y

Keywords

Navigation