Advertisement

Medical Molecular Morphology

, Volume 51, Issue 2, pp 111–117 | Cite as

Expression analyses of Dusp22 (Dual-specificity phosphatase 22) in mouse tissues

  • Nanako Hamada
  • Makoto Mizuno
  • Hiroyuki Tomita
  • Ikuko Iwamoto
  • Akira Hara
  • Koh-ichi Nagata
Original Paper
  • 98 Downloads

Abstract

Dusp22 (dual-specificity phosphatase 22) is considered to regulate various cellular processes through the regulation of protein dephosphorylation. In this study, we prepared a specific antibody against Dusp22, anti-Dusp22, and carried out expression analyses with mouse tissues and cultured cell lines. Western blotting analyses demonstrated a tissue-dependent expression profile of Dusp22 in the adult mouse, and strongly suggested the presence of isoforms with larger molecular masses. In fibroblast NIH3T3 cells, while both endogenous and Myc-tagged Dusp22 was diffusely distributed in the cytoplasm, Myc-Dusp22 was partially colocalized with actin cytoskeleton. From the obtained results, anti-Dusp22 was found to be a useful tool for biochemical and cell biological analyses of Dusp22.

Keywords

Dusp22 Dual-specificity phosphatase Antibody Mouse tissues 

Abbreviations

Dusp

Dual-specificity phosphatase

MAPK

Mitogen-activated protein kinase

JNK

c-jun N-terminal kinase

MKK

MAPK kinase

Notes

Acknowledgements

This work was supported in part by JSPS KAKENHI Grant (Grant nos. 16J06511, 23590124, 16K07211 and 17K16294), a grant-in-aid of the Practical Research Project for Rare/Intractable Diseases from Japan Agency for Medical Research and Development (AMED) (17bm0804009h0201), and Takeda Science Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Patterson KI, Brummer T, O’Brien PM, Daly RJ (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 418:475–489CrossRefPubMedGoogle Scholar
  2. 2.
    Soulsby M, Bennett AM (2009) Physiological signaling specificity by protein tyrosine phosphatases. Physiology (Bethesda) 24:281–289.  https://doi.org/10.1152/physiol.00017.2009 CrossRefGoogle Scholar
  3. 3.
    Schumacher MA, Todd JL, Rice AE et al (2002) Structural basis for the recognition of a bisphosphorylated MAP kinase peptide by human VHR protein Phosphatase. Biochemistry 41:3009–3017CrossRefPubMedGoogle Scholar
  4. 4.
    Shen Y, Luche R, Wei B et al (2001) Activation of the Jnk signaling pathway by a dual-specificity phosphatase, JSP-1. Proc Natl Acad Sci USA 98:13613–13618.  https://doi.org/10.1073/pnas.231499098 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chen AJ, Zhou G, Juan T et al (2002) The dual specificity JKAP specifically activates the c-Jun N-terminal kinase pathway. J Biol Chem 277:36592–36601.  https://doi.org/10.1074/jbc.M200453200 CrossRefPubMedGoogle Scholar
  6. 6.
    Schwertassek U, Buckley DA, Xu C-F et al (2010) Myristoylation of the dual-specificity phosphatase c-JUN N-terminal kinase (JNK) stimulatory phosphatase 1 is necessary for its activation of JNK signaling and apoptosis. FEBS J 277:2463–2473.  https://doi.org/10.1111/j.1742-4658.2010.07661 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Li J-P, Fu Y-N, Chen Y-R, Tan T-H (2010) JNK pathway-associated phosphatase dephosphorylates focal adhesion kinase and suppresses cell migration. J Biol Chem 285:5472–5478.  https://doi.org/10.1074/jbc.M109.060186 CrossRefPubMedGoogle Scholar
  8. 8.
    Li J-P, Yang C-Y, Chuang H-C et al (2014) The phosphatase JKAP/DUSP22 inhibits T-cell receptor signalling and autoimmunity by inactivating Lck. Nat Commun 5:3618.  https://doi.org/10.1038/ncomms4618 PubMedCrossRefGoogle Scholar
  9. 9.
    Sanchez-Mut JV, Aso E, Heyn H et al (2014) Promoter hypermethylation of the phosphatase DUSP22 mediates PKA-dependent TAU phosphorylation and CREB activation in Alzheimer’s disease. Hippocampus 24:363–368.  https://doi.org/10.1002/hipo.22245 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Csikesz CR, Knudson RA, Greipp PT et al (2013) Primary cutaneous CD30-positive T-cell lymphoproliferative disorders with biallelic rearrangements of DUSP22. J Invest Dermatol 133:1680–1682.  https://doi.org/10.1038/jid.2013.22 CrossRefPubMedGoogle Scholar
  11. 11.
    Sekine Y, Ikeda O, Hayakawa Y et al (2007) DUSP22/LMW-DSP2 regulates estrogen receptor-[alpha]-mediated signaling through dephosphorylation of Ser-118. Oncogene 26:6038–6049CrossRefPubMedGoogle Scholar
  12. 12.
    Hanai N, Nagata K-I, Kawajiri A et al (2004) Biochemical and cell biological characterization of a mammalian septin, Sept11. FEBS Lett 568:83–88.  https://doi.org/10.1016/j.febslet.2004.05.030 CrossRefPubMedGoogle Scholar
  13. 13.
    Mizutani Y, Ito H, Iwamoto I et al (2013) Possible role of a septin, SEPT1, in spreading in squamous cell carcinoma DJM-1 cells. Biol Chem 394:281–290.  https://doi.org/10.1515/hsz-2012-0258 CrossRefPubMedGoogle Scholar
  14. 14.
    Inaguma Y, Ito H, Iwamoto I et al (2016) Morphological characterization of Class III phosphoinositide 3-kinase during mouse brain development. Med Mol Morphol 49:28–33.  https://doi.org/10.1007/s00795-015-0116-1 CrossRefPubMedGoogle Scholar
  15. 15.
    Hamada N, Ito H, Nishijo T et al (2016) Essential role of the nuclear isoform of RBFOX1, a candidate gene for autism spectrum disorders, in the brain development. Sci Rep 6:30805.  https://doi.org/10.1038/srep30805 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society for Clinical Molecular Morphology 2017

Authors and Affiliations

  • Nanako Hamada
    • 1
  • Makoto Mizuno
    • 1
  • Hiroyuki Tomita
    • 2
  • Ikuko Iwamoto
    • 1
  • Akira Hara
    • 2
  • Koh-ichi Nagata
    • 1
  1. 1.Department of Molecular Neurobiology, Institute for Developmental ResearchAichi Human Service CenterKasugaiJapan
  2. 2.Department of Tumor PathologyGifu University Graduate School of MedicineGifuJapan

Personalised recommendations