Medical Molecular Morphology

, Volume 51, Issue 2, pp 102–110 | Cite as

SUOX is negatively associated with multistep carcinogenesis and proliferation in oral squamous cell carcinoma

  • Ken Nakamura
  • Jun Akiba
  • Sachiko Ogasawara
  • Yoshiki Naito
  • Masamichi Nakayama
  • Yushi Abe
  • Jingo Kusukawa
  • Hirohisa Yano
Original Paper


Oral squamous cell carcinoma (OSCC) is the most common malignant tumor in the head and neck region. The aim of this study was to identify the key molecules and to elucidate the molecular mechanisms of OSCC carcinogenesis through a microarray analysis of RNA extracted from normal epithelium, dysplasia, and squamous cell carcinoma components. Out of molecules that showed changes in gene expression in the microarray analysis, we focused on Sulfite oxidase (SUOX), which correlated significantly with carcinogenic process and exhibited a stepwise decrease in expression. The expression of SUOX was evaluated in detail at the protein level using samples from 58 patients with cancer of the tongue, and correlating clinicopathological factors were also comprehensively examined. SUOX expression declined significantly from normal epithelium to dysplasia to squamous cell carcinoma components in line with carcinogenic process. With regard to squamous cell carcinoma, SUOX expression was significantly lower when T classification was high. Our findings indicated that SUOX is negatively associated with the progression and proliferation of tongue cancer, and suggest that SUOX may be a key molecule in tongue tumors.


Oral squamous cell carcinoma Sulfite oxidase Immunohistochemistry Carcinogenesis Microarray Dysplasia 



We thank Mr. Hiroto Fukushima and Ms. Kumiko Tsubone for their assistance in our experiments.

Compliance with ethical standards

Conflict of interest

All authors have declared no conflicts of interest.


  1. 1.
    Neville BW, Day TA (2002) Oral cancer and precancerous lesions. CA Cancer J Clin 52:195–215CrossRefPubMedGoogle Scholar
  2. 2.
    Warnakulasuriya S (2009) Causes of oral cancer–an appraisal of controversies. Br Dent J 207:471–475CrossRefPubMedGoogle Scholar
  3. 3.
    Larsen SR, Johansen J, Sorensen JA, Krogdahl A (2009) The prognostic significance of histological features in oral squamous cell carcinoma. J Oral Pathol Med 38:657–662CrossRefPubMedGoogle Scholar
  4. 4.
    Marocchio LS, Lima J, Sperandio FF, Correa L, de Sousa SO (2010) Oral squamous cell carcinoma: an analysis of 1,564 cases showing advances in early detection. J Oral Sci 52:267–273CrossRefPubMedGoogle Scholar
  5. 5.
    Troeltzsch M, Knosel T, Eichinger C, Probst F, Troeltzsch M, Woodlock T, Mast G, Ehrenfeld M, Otto S (2014) Clinicopathologic features of oral squamous cell carcinoma: do they vary in different age groups? J Oral Maxillofac Surg 72:1291–1300CrossRefPubMedGoogle Scholar
  6. 6.
    El-Naggar AK, Chan JKC, Grandis JR, Takata T, Slootweg PJ (2016) WHO classification of head and neck tumours 4th Edition. WHO Press World Health Organization, Geneva, pp 109–118Google Scholar
  7. 7.
    Woolgar JA (2006) Histopathological prognosticators in oral and oropharyngeal squamous cell carcinoma. Oral Oncol 42:229–239CrossRefPubMedGoogle Scholar
  8. 8.
    Woolgar JA, Triantafyllou A (2011) Squamous cell carcinoma and precursor lesions: clinical pathology. Periodontol 2000 57:51–72CrossRefGoogle Scholar
  9. 9.
    Ebrahimi A, Murali R, Gao K, Elliott MS, Clark JR (2011) The prognostic and staging implications of bone invasion in oral squamous cell carcinoma. Cancer 117:4460–4467CrossRefPubMedGoogle Scholar
  10. 10.
    Li Y, Bai S, Carroll W, Dayan D, Dort JC, Heller K, Jour G, Lau H, Penner C, Prystowsky M, Rosenthal E, Schlecht NF, Smith RV, Urken M, Vered M, Wang B, Wenig B, Negassa A, Brandwein-Gensler M (2013) Validation of the risk model: high-risk classification and tumor pattern of invasion predict outcome for patients with low-stage oral cavity squamous cell carcinoma. Head Neck Pathol 7:211–223CrossRefPubMedGoogle Scholar
  11. 11.
    Weijers M, Snow GB, Bezemer PD, van der Wal JE, van der Waal I (2002) The clinical relevance of epithelial dysplasia in the surgical margins of tongue and floor of mouth squamous cell carcinoma: an analysis of 37 patients. J Oral Pathol Med 31:11–15CrossRefPubMedGoogle Scholar
  12. 12.
    Safi AF, Kauke M, Grandoch A, Nickenig HJ, Zoller JE, Kreppel M (2017) Analysis of clinicopathological risk factors for locoregional recurrence of oral squamous cell carcinoma—retrospective analysis of 517 patients. J Craniomaxillofac Surg 45(10): 1749–1753CrossRefGoogle Scholar
  13. 13.
    Mehanna HM, Rattay T, Smith J, McConkey CC (2009) Treatment and follow-up of oral dysplasia - a systematic review and meta-analysis. Head Neck 31:1600–1609CrossRefPubMedGoogle Scholar
  14. 14.
    Gaykalova DA, Mambo E, Choudhary A, Houghton J, Buddavarapu K, Sanford T, Darden W, Adai A, Hadd A, Latham G, Danilova LV, Bishop J, Li RJ, Westra WH, Hennessey P, Koch WM, Ochs MF, Califano JA, Sun W (2014) Novel insight into mutational landscape of head and neck squamous cell carcinoma. PLoS One 9:e93102CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, Kryukov GV, Lawrence MS, Sougnez C, McKenna A, Shefler E, Ramos AH, Stojanov P, Carter SL, Voet D, Cortes ML, Auclair D, Berger MF, Saksena G, Guiducci C, Onofrio RC, Parkin M, Romkes M, Weissfeld JL, Seethala RR, Wang L, Rangel-Escareno C, Fernandez-Lopez JC, Hidalgo-Miranda A, Melendez-Zajgla J, Winckler W, Ardlie K, Gabriel SB, Meyerson M, Lander ES, Getz G, Golub TR, Garraway LA, Grandis JR (2011) The mutational landscape of head and neck squamous cell carcinoma. Science 333:1157–1160CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264CrossRefPubMedGoogle Scholar
  17. 17.
    Allred DC, Harvey JM, Berardo M, Clark GM (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 11:155–168PubMedGoogle Scholar
  18. 18.
    Sasahira T, Ueda N, Yamamoto K, Kurihara M, Matsushima S, Bhawal UK, Kirita T, Kuniyasu H (2014) Prox1 and FOXC2 act as regulators of lymphangiogenesis and angiogenesis in oral squamous cell carcinoma. PLoS One 9:e92534CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Takada K, Toyokawa G, Okamoto T, Akamine T, Takamori S, Katsura M, Fujishita T, Shoji F, Oda Y, Maehara Y (2016) An immunohistochemical analysis of PD-L1 protein expression in surgically resected small cell lung cancer using different antibodies and criteria. Anticancer Res 36:3409–3412PubMedGoogle Scholar
  20. 20.
    Harvey JM, Clark GM, Osborne CK, Allred DC (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol 17:1474–1481CrossRefPubMedGoogle Scholar
  21. 21.
    Suzuki F, Oridate N, Homma A, Nakamaru Y, Nagahashi T, Yagi K, Yamaguchi S, Furuta Y, Fukuda S (2005) S100A2 expression as a predictive marker for late cervical metastasis in stage I and II invasive squamous cell carcinoma of the oral cavity. Oncol Rep 14:1493–1498PubMedGoogle Scholar
  22. 22.
    Yanagawa T, Omura K, Harada H, Nakaso K, Iwasa S, Koyama Y, Onizawa K, Yusa H, Yoshida H (2004) Heme oxygenase-1 expression predicts cervical lymph node metastasis of tongue squamous cell carcinomas. Oral Oncol 40:21–27CrossRefPubMedGoogle Scholar
  23. 23.
    Fillies T, Werkmeister R, van Diest PJ, Brandt B, Joos U, Buerger H (2005) HIF1-alpha overexpression indicates a good prognosis in early stage squamous cell carcinomas of the oral floor. BMC Cancer 5:84CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    de Carvalho-Neto PB, dos Santos M, de Carvalho MB, Mercante AM, dos Santos VP, Severino P, Tajara EH, Louro ID, da Silva-Conforti AM (2013) FAS/FASL expression profile as a prognostic marker in squamous cell carcinoma of the oral cavity. PLoS One 8:e69024CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bova RJ, Quinn DI, Nankervis JS, Cole IE, Sheridan BF, Jensen MJ, Morgan GJ, Hughes CJ, Sutherland RL (1999) Cyclin D1 and p16INK4A expression predict reduced survival in carcinoma of the anterior tongue. Clin Cancer Res 5:2810–2819PubMedGoogle Scholar
  26. 26.
    Tsai ST, Jin YT, Tsai WC, Wang ST, Lin YC, Chang MT, Wu LW (2005) S100A2, a potential marker for early recurrence in early-stage oral cancer. Oral Oncol 41:349–357CrossRefPubMedGoogle Scholar
  27. 27.
    Liu LK, Jiang XY, Zhou XX, Wang DM, Song XL, Jiang HB (2010) Upregulation of vimentin and aberrant expression of E-cadherin/beta-catenin complex in oral squamous cell carcinomas: correlation with the clinicopathological features and patient outcome. Mod Pathol 23:213–224CrossRefPubMedGoogle Scholar
  28. 28.
    Pande P, Soni S, Kaur J, Agarwal S, Mathur M, Shukla NK, Ralhan R (2002) Prognostic factors in betel and tobacco related oral cancer. Oral Oncol 38:491–499CrossRefPubMedGoogle Scholar
  29. 29.
    Tripathi SC, Kaur J, Matta A, Gao X, Sun B, Chauhan SS, Thakar A, Shukla NK, Duggal R, Choudhary AR, DattaGupta S, Sharma MC, Ralhan R, Siu KW (2012) Loss of DLC1 is an independent prognostic factor in patients with oral squamous cell carcinoma. Mod Pathol 25:14–25CrossRefPubMedGoogle Scholar
  30. 30.
    Kisker C, Schindelin H, Pacheco A, Wehbi WA, Garrett RM, Rajagopalan KV, Enemark JH, Rees DC (1997) Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase. Cell 91:973–983CrossRefPubMedGoogle Scholar
  31. 31.
    D’Errico G, Di Salle A, La Cara F, Rossi M, Cannio R (2006) Identification and characterization of a novel bacterial sulfite oxidase with no heme binding domain from Deinococcus radiodurans. J Bacteriol 188:694–701CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Tan WH, Eichler FS, Hoda S, Lee MS, Baris H, Hanley CA, Grant PE, Krishnamoorthy KS, Shih VE (2005) Isolated sulfite oxidase deficiency: a case report with a novel mutation and review of the literature. Pediatrics 116:757–766CrossRefPubMedGoogle Scholar
  33. 33.
    Cohen HJ, Betcher-Lange S, Kessler DL, Rajagopalan KV (1972) Hepatic sulfite oxidase. Congruency in mitochondria of prosthetic groups and activity. J Biol Chem 247:7759–7766PubMedGoogle Scholar
  34. 34.
    Feng C, Wilson HL, Hurley JK, Hazzard JT, Tollin G, Rajagopalan KV, Enemark JH (2003) Essential role of conserved arginine 160 in intramolecular electron transfer in human sulfite oxidase. Biochemistry 42:12235–12242CrossRefPubMedGoogle Scholar
  35. 35.
    Johnson JL (2003) Prenatal diagnosis of molybdenum cofactor deficiency and isolated sulfite oxidase deficiency. Prenat Diagn 23:6–8CrossRefPubMedGoogle Scholar
  36. 36.
    Dublin AB, Hald JK, Wootton-Gorges SL (2002) Isolated sulfite oxidase deficiency: MR imaging features. Am J Neuroradiol 23:484–485PubMedGoogle Scholar
  37. 37.
    Jin GZ, Yu WL, Dong H, Zhou WP, Gu YJ, Yu H, Yu H, Lu XY, Xian ZH, Liu YK, Cong WM, Wu MC (2013) SUOX is a promising diagnostic and prognostic biomarker for hepatocellular carcinoma. J Hepatol 59:510–517CrossRefPubMedGoogle Scholar
  38. 38.
    Muys BR, Lorenzi JC, Zanette DL, Lima e Bueno Rde B, de Araujo LF, Dinarte-Santos AR, Alves CP, Ramao A, de Molfetta GA, Vidal DO, Silva WA Jr (2016) Placenta-enriched LincRNAs MIR503HG and LINC00629 decrease migration and invasion potential of JEG-3 cell line. PLoS One 11:e0151560CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Yue H, Cai Y, Song Y, Meng L, Chen X, Wang M, Bian Z, Wang R (2017) Elevated TARP promotes proliferation and metastasis of salivary adenoid cystic carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 123:468–476CrossRefPubMedGoogle Scholar
  40. 40.
    Rotunno M, Hu N, Su H, Wang C, Goldstein AM, Bergen AW, Consonni D, Pesatori AC, Bertazzi PA, Wacholder S, Shih J, Caporaso NE, Taylor PR, Landi MT (2011) A gene expression signature from peripheral whole blood for stage I lung adenocarcinoma. Cancer Prev Res (Phila) 4:1599–1608CrossRefGoogle Scholar
  41. 41.
    Porpaczy E, Bilban M, Heinze G, Gruber M, Vanura K, Schwarzinger I, Stilgenbauer S, Streubel B, Fonatsch C, Jaeger U (2009) Gene expression signature of chronic lymphocytic leukaemia with Trisomy 12. Eur J Clin Investig 39:568–575CrossRefGoogle Scholar
  42. 42.
    Das ND, Park JH, Jung KH, Lee HT, Park KS, Choi MR, Chai YG (2011) Sodium arsenite dependent protein expression analysis on human embryonic carcinoma (NCCIT) cell line. Toxicol Lett 207:149–158CrossRefPubMedGoogle Scholar
  43. 43.
    Fan S, Liu B, Sun L, Lv XB, Lin Z, Chen W, Chen W, Tang Q, Wang Y, Su Y, Jin S, Zhang D, Zhong J, Li Y, Wen B, Zhang Z, Yang P, Zhou B, Liang Q, Yu X, Zhu Y, Hu P, Chu J, Huang W, Feng Y, Peng H, Huang Q, Song E, Li J (2015) Mitochondrial fission determines cisplatin sensitivity in tongue squamous cell carcinoma through the BRCA1-miR-593-5p-MFF axis. Oncotarget 6:14885–14904PubMedPubMedCentralGoogle Scholar
  44. 44.
    Lin CC, Hsu YC, Li YH, Kuo YY, Hou HA, Lan KH, Chen TC, Tzeng YS, Kuo YY, Kao CJ, Chuang PH, Tseng MH, Chiu YC, Chou WC, Tien HF (2017) Higher HOPX expression is associated with distinct clinical and biological features and predicts poor prognosis in de novo acute myeloid leukemia. Haematologica 102:1044–1053CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Del Valle PR, Milani C, Brentani MM, Katayama ML, de Lyra EC, Carraro DM, Brentani H, Puga R, Lima LA, Rozenchan PB, Nunes Bdos S, Goes JC, Azevedo Koike Folgueira M A (2014) Transcriptional profile of fibroblasts obtained from the primary site, lymph node and bone marrow of breast cancer patients. Genet Mol Biol 37: 480–489Google Scholar
  46. 46.
    Nagy A, Pongor LS, Szabo A, Santarpia M, Gyorffy B (2017) KRAS driven expression signature has prognostic power superior to mutation status in non-small cell lung cancer. Int J Cancer 140:930–937CrossRefPubMedGoogle Scholar
  47. 47.
    Subramanian S, West RB, Marinelli RJ, Nielsen TO, Rubin BP, Goldblum JR, Patel RM, Zhu S, Montgomery K, Ng TL, Corless CL, Heinrich MC, van de Rijn M (2005) The gene expression profile of extraskeletal myxoid chondrosarcoma. J Pathol 206:433–444CrossRefPubMedGoogle Scholar
  48. 48.
    Porpaczy E, Tauber S, Bilban M, Kostner G, Gruber M, Eder S, Heintel D, Le T, Fleiss K, Skrabs C, Shehata M, Jager U, Vanura K (2013) Lipoprotein lipase in chronic lymphocytic leukaemia - strong biomarker with lack of functional significance. Leuk Res 37:631–636CrossRefPubMedGoogle Scholar
  49. 49.
    Kuang J, Li QY, Fan F, Shen NJ, Zhan YJ, Tang ZH, Yu WL (2017) Overexpression of the X-linked ribosomal protein S4 predicts poor prognosis in patients with intrahepatic cholangiocarcinoma. Oncol Lett 14:41–46CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Shen L, Du X, Ma H, Mei S (2017) miR-1193 suppresses the proliferation and invasion of human T-cell leukemia cells through directly targeting the transmembrane 9 superfamily 3 (TM9SF3). Oncol Res 25:1643–1651CrossRefPubMedGoogle Scholar
  51. 51.
    Zhao L, Zhao Y, He Y, Mao Y (2017) miR-19b promotes breast cancer metastasis through targeting MYLIP and its related cell adhesion molecules. Oncotarget 8:64330–64343PubMedPubMedCentralGoogle Scholar
  52. 52.
    Bruggemann M, Gromes A, Poss M, Schmidt D, Klumper N, Tolkach Y, Dietrich D, Kristiansen G, Muller SC, Ellinger J (2017) Systematic analysis of the expression of the mitochondrial ATP synthase (Complex V) subunits in clear cell renal cell carcinoma. Transl Oncol 10:661–668CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Zilberg C, Lee MW, Yu B, Ashford B, Kraitsek S, Ranson M, Shannon K, Cowley M, Iyer NG, Palme CE, Ch’ng S, Low T, O’Toole H, Clark S, Gupta JR R (2017) Analysis of clinically relevant somatic mutations in high-risk head and neck cutaneous squamous cell carcinoma. Mod Pathol.
  54. 54.
    Sen S, Carnelio S (2016) Expression of epithelial cell adhesion molecule (EpCAM) in oral squamous cell carcinoma. Histopathology 68:897–904CrossRefPubMedGoogle Scholar
  55. 55.
    Hema K, Rao K, Devi HU, Priya N, Smitha T, Sheethal H (2014) Immunohistochemical study of CD44s expression in oral squamous cell carcinoma-its correlation with prognostic parameters. J Oral Maxillofac Pathol 18:162–168CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Byatnal AA, Byatnal A, Sen S, Guddattu V, Solomon MC (2015) Cyclooxygenase-2—an imperative prognostic biomarker in oral squamous cell carcinoma—an immunohistochemical study. Pathol Oncol Res 21:1123–1131CrossRefPubMedGoogle Scholar
  57. 57.
    Tang JY, Hsi E, Huang YC, Hsu NC, Yang WC, Chang HW, Chai CY, Chu PY (2015) Overexpression of autophagy-related 16-like 1 in patients with oral squamous cell carcinoma. Pathol Oncol Res 21:301–305CrossRefPubMedGoogle Scholar
  58. 58.
    Xia F, Xu JC, Zhang P, Zhang YY, Zhang QW, Chao ZH, Wang F (2014) Glucose-regulated protein 78 and heparanase expression in oral squamous cell carcinoma: correlations and prognostic significance. World J Surg Oncol 12:121CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Kok SH, Chang HH, Tsai JY, Hung HC, Lin CY, Chiang CP, Liu CM, Kuo MY (2010) Expression of Cyr61 (CCN1) in human oral squamous cell carcinoma: An independent marker for poor prognosis. Head Neck 32:1665–1673CrossRefPubMedGoogle Scholar
  60. 60.
    Pannone G, Hindi SA, Santoro A, Sanguedolce F, Rubini C, Cincione RI, De Maria S, Tortorella S, Rocchetti R, Cagiano S, Pedicillo C, Serpico R, Lo Muzio L, Bufo P (2011) Aurora B expression as a prognostic indicator and possible therapeutic target in oral squamous cell carcinoma. Int J Immunopathol Pharmacol 24:79–88CrossRefPubMedGoogle Scholar
  61. 61.
    Bacchiocchi R, Rubini C, Pierpaoli E, Borghetti G, Procacci P, Nocini PF, Santarelli A, Rocchetti R, Ciavarella D, Lo Muzio L, Fazioli F (2008) Prognostic value analysis of urokinase-type plasminogen activator receptor in oral squamous cell carcinoma: an immunohistochemical study. BMC Cancer 8:220CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kitamura R, Toyoshima T, Tanaka H, Kawano S, Kiyosue T, Matsubara R, Goto Y, Hirano M, Oobu K, Nakamura S (2012) Association of cytokeratin 17 expression with differentiation in oral squamous cell carcinoma. J Cancer Res Clin Oncol 138:1299–1310CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Cheng MF, Lin LH, Huang MS, Lee HS, Ji DD, Lin CS, Hsia KT (2017) Downexpression of matriptase-2 correlates with tumor progression and clinical prognosis in oral squamous-cell carcinoma. Appl Immunohistochem Mol Morphol 25:481–488CrossRefPubMedGoogle Scholar
  64. 64.
    Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899CrossRefPubMedGoogle Scholar
  65. 65.
    Kim JW, Dang C V (2006) Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res 66:8927–8930CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society for Clinical Molecular Morphology 2017

Authors and Affiliations

  • Ken Nakamura
    • 1
    • 2
  • Jun Akiba
    • 1
    • 3
  • Sachiko Ogasawara
    • 1
  • Yoshiki Naito
    • 3
  • Masamichi Nakayama
    • 1
  • Yushi Abe
    • 1
    • 2
  • Jingo Kusukawa
    • 2
  • Hirohisa Yano
    • 1
  1. 1.Department of PathologyKurume University School of MedicineKurumeJapan
  2. 2.Dental and Oral Medical CenterKurume University School of MedicineKurumeJapan
  3. 3.Department of Diagnostic PathologyKurume University HospitalKurumeJapan

Personalised recommendations