Skip to main content

Advertisement

Log in

Establishment of successively transplantable rabbit VX2 cancer cells that express enhanced green fluorescent protein

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Morphological detection of cancer cells in the rabbit VX2 allograft transplantation model is often difficult in a certain region such as serosal cavity where reactive mesothelial cells mimic cancer cells and both cells share common markers such as cytokeratins. Therefore, tagging VX2 cells with a specific and sensitive marker that easily distinguishes them from other cells would be advantageous. Thus, we tried to establish a successively transplantable, enhanced green fluorescent protein (EGFP)-expressing VX2 model. Cancer cells obtained from a conventional VX2-bearing rabbit were cultured in vitro and transfected with an EGFP-encoding vector, and then successively transplanted in Healthy Japanese White rabbits (HJWRs) (n = 8). Besides, conventional VX2 cells were transplanted in other HJWRs (n = 8). Clinicopathological comparison analyses were performed between the two groups. The success rate of transplantation was 100 % for both groups. The sensitivity and specificity of EGFP for immunohistochemical detection of VX2 cells were 84.3 and 100 %, respectively. No significant differences in cancer cell morphology, tumor size (P = 0.742), Ki-67 labeling index (P = 0.878), or survival rate (P = 0.592) were observed between the two. VX2 cells can be genetically altered, visualized by EGFP, and successively transplanted without significant alteration of morphological and biological properties compared to those of the conventional model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shiomi M (2009) Rabbit as a model for the study of human diseases. In: Houdebine L-M, Fan J (eds) Rabbit biotechnology. Springer Science, New York, pp 49–63

    Chapter  Google Scholar 

  2. Shope RE, Hurst EW (1933) Infectious papillomatosis of rabbits with note on histopathology. J Exp Med 58:607–624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Rous P, Beard JW (1935) Progression to carcinoma of virus-induced rabbit papillomatosis. J Exp Med 62:523–548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kidd JG, Rous P (1940) A transplantable rabbit carcinoma originating in a virus-induced papilloma and containing the virus in masked or altered form. J Exp Med 71:813–838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Rous P, Kidd JG, Smith WE (1952) Experiments on the cause of the rabbit carcinomas derived from virus-induced papillomas. II. Loss by the VX2 carcinoma of the power to immunize hosts against the papilloma virus. J Exp Med 96:159–174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Mei LJ, Yang XJ, Tang L, Hassan AH, Yonemura Y, Li Y (2010) Establishment and identification of a rabbit model of peritoneal carcinomatosis from gastric cancer. BMC Cancer 10:124

    Article  PubMed Central  PubMed  Google Scholar 

  7. Chalfie M, Kine SR (2005) Methods of biochemical analysis, green fluorescent protein properties, applications and protocols, 2nd edn. Wiley, Hoboken, pp 1–488

    Google Scholar 

  8. Galasko CSB, Haynes DW (1976) Survival of VX2 carcinoma cells in vivo. Eur J Cancer 12:1025–1026

    Article  CAS  PubMed  Google Scholar 

  9. Shah SA, Dickson JA (1978) Preservation of enzymatically prepared rabbit VX2 tumour cells in vitro. Eur J Cancer 14:447–448

    Article  CAS  PubMed  Google Scholar 

  10. Georges E, Breitburd R, Jibard N, Orth G (1985) Two Shope papillomavirus-associated VX2 carcinoma cell lines with different levels of keratinocyte differentiation and transplantability. J Virol 55:246–250

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Osato T, Ito Y (1967) In vitro cultivation and immunofluorescent studies of transplantable carcinomas VX2 and VX7. Persistence of a Shope virus-related antigenic substance in the cells of both tumors. J Exp Med 126:881–886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Dabbous MK, Roberts AN, Brinkley SB (1977) Collagenase and neutral protease activities in cultures of rabbit VX-2 carcinoma. Cancer Res 37:3537–3544

    CAS  PubMed  Google Scholar 

  13. Dabbous MK, Sobhy C, Roberts AN, Brinkley B (1977) Changes in the collagenolytic activity released by primary VX-2 carcinoma cultures as a function of tumor growth. Mol Cell Biochem 16:37–42

    Article  CAS  PubMed  Google Scholar 

  14. Easty DM, Easty GC (1982) Establishment of an in vitro cell line from the rabbit VX2 carcinoma. Virchows Arch B Cell Pathol Incl Mol Patho 39:333–337

    Article  CAS  Google Scholar 

  15. Handal JA, Schulz JF, Florez GB, Kwok SC, Khurana JS, Samuel SP (2013) Creation of rabbit bone and soft tissue tumor using cultured VX2 cells. J Surg Res 179:e127–e132

    Article  CAS  PubMed  Google Scholar 

  16. Proschek D, Tonak M, Kafchitsas K, Zangos S, Mack MG, Theisen A, Kurth AA (2011) Direct implantation of VX-2 carcinoma: a new rabbit bone model using a three-dimensional matrix as a carrier for the tumor cells. Eur Surg Res 47:154–158

    Article  CAS  PubMed  Google Scholar 

  17. Dabbous MK, El-Torky M, Haney L, Sobhy N, Brinkle SB (1983) Cytogenetic analysis of collagenase-releasing rabbit VX-2 carcinoma-derived cells. Exp Mol Pathol 38:1–21

    Article  CAS  PubMed  Google Scholar 

  18. Galasko CSB (1976) Mechanisms of bone destruction in the development of skeletal metastases. Nature 263:507–508

    Article  CAS  PubMed  Google Scholar 

  19. Galasko CSB, Bennett A (1976) Relationship of bone destruction in skeletal metastases to osteoclast activation and prostaglandins. Nature 263:508–510

    Article  CAS  PubMed  Google Scholar 

  20. Toole BP, Biswas C, Gross J (1979) Hyaluronate and invasiveness of the rabbit V2 carcinoma. Proc Natl Acad Sci USA 76:6299–6303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Sträuli P, In-Albon A, Haemmerli G (1983) Morphological studies on V2 carcinoma invasion and tumor-associated connective tissue changes in the rabbit mesentery. Cancer Res 43:5403–5410

    Google Scholar 

  22. Haemmerli G, Müller-Glauser W, Bruckner P, Hauser-Urfer I, Sträuli P (1985) Tumor-associated desmoplasia in the rabbit mesentery characterized by morphological, biochemical and cytophotometric methods. Int J Cancer 35:527–534

    Article  CAS  PubMed  Google Scholar 

  23. Stewart EE, Sun H, Chen X, Schafer PH, Chen Y, Garcia BM, Lee TY (2012) Effect of an angiogenesis inhibitor on hepatic tumor perfusion and the implications for adjuvant cytotoxic therapy. Radiology 264:68–77

    Article  PubMed  Google Scholar 

  24. Tang L, Mei LJ, Yang XJ, Huang CQ, Zhou YF, Yonemura Y, Li Y (2011) Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy improves survival of gastric cancer with peritoneal carcinomatosis: evidence from an experimental study. J Transl Med 9:53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Yu H, Zhu GY, Xu RZ, Niu HZ, Lu Q, Li GZ, Wang ZY, Zhang DS, Gu N, Teng GJ (2011) Arterial embolization hyperthermia using As2O3 nanoparticles in VX2 carcinoma-induced liver tumors. PLoS One 6:e17926

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Lee JY, Choi BI, Son KR, Lee JM, Kim SJ, Park HS, Chang JM, Choi SH, Kim MA, Moon WK (2012) Lymph node metastases from gastric cancer: gadofluorine M and gadopentetate dimeglumine MR imaging in a rabbit model. Radiology 263:391–400

    Article  PubMed  Google Scholar 

  27. Hayakawa T (1997) Comparative anatomy of the mammalian lymphatic system. In: Uchino S, Kato S, Ohtani O (eds) Lymphatics. Nishimura-shoten, Niigata, pp 286–295 (in Japanese)

    Google Scholar 

  28. Spira A (1962) The lymph node group (lymphocentra) in mammals: an attempt at homology. Anat Anz 111:294–364 (in German)

    CAS  PubMed  Google Scholar 

  29. Kawashima Y, Sugimura M, Hwang Y-C, Kudo N (1964) The lymph system in mice. Jap J Vet Res 12:67–81

    Google Scholar 

  30. Seo S (1981) Anatomical study of the lymphatic system in rats. Tokyo Jikeikai Med J 96:642–662 (in Japanese with English abstract)

    Google Scholar 

  31. Nishida K (1954) About the lymphatic system in rabbits. Kumamoto Igakkai Zasshi 28:295–318 (in Japanese)

    Google Scholar 

  32. Kutsuna M (1966) Anatomical study of the lymphatic trunks in man and mammals. Kumamoto Med J 19:47–58

    CAS  PubMed  Google Scholar 

  33. Kutsuna M (1968) Lymphatic trunks. In: Kutsuna M (ed) Anatomie des Lymphsystems der Japaner. Kanehara, Tokyo, pp 211–225 (in Japanese)

    Google Scholar 

  34. Hayakawa T, Koda M, Fukushima O, Kosugi K, Tokudome M, Yamashita H (1986) A comparative anatomical study of the lymphatic system of the lung in mammals: 6. Findings in rabbit. Jpn J Lymphol 9:63–68 (in Japanese with English abstract)

    Google Scholar 

  35. Murakami F (1967) Comparative anatomical study on the communication of the intrathoracic lymphatic system with the cervical lymphatic system. Kumamoto Igakkai Zasshi 41:267–306 (in Japanese)

    CAS  PubMed  Google Scholar 

  36. Kutsuna M (1965) Intrathoracic lymph flow, with special regard to the communication of intrathoracic lymph vessels with cervical lymph nodes. Kumamoto Med J 18:228–233

    CAS  PubMed  Google Scholar 

  37. Murakami G (2002) Last-intercalated node and direct lymphatic drainage into the thoracic duct from the thoracoabdominal viscera. Jpn J Thorac Cardiovasc Surg 50:93–103

    Article  PubMed  Google Scholar 

  38. Riquet M, Assouad J, Bagan P, Foucault C, Le Pimpec Barthes F, Dujon A, Danel C (2005) Skip mediastinal lymph node metastasis and lung cancer: a particular N2 subgroup with a better prognosis. Ann Thorac Surg 79:225–233

    Article  PubMed  Google Scholar 

  39. Sakao Y, Miyamoto H, Yamazaki A, Ou S, Shiomi K, Sonobe S, Sakuraba M (2006) The spread of metastatic lymph nodes to the mediastinum from left upper lobe cancer: results of superior mediastinal nodal dissection through a median sternotomy. Eur J Cardiothorac Surg 30:543–547

    Article  PubMed  Google Scholar 

  40. Sakao Y, Miyamoto H, Oh S, Takahashi N, Sakuraba M (2007) Clinicopathological factors associated with unexpected N3 in patients with mediastinal lymph node involvement. J Thorac Oncol 2:1107–1111

    Article  PubMed  Google Scholar 

  41. Anami K, Yamashita S, Yamamoto S, Chujo M, Tokuishi K, Moroga T, Mori H, Kawahara K (2013) Contralateral mediastinal lymph node micrometastases assessed by video-assisted thoracoscopic surgery in stage I non-small cell left lung cancer. Eur J Cardiothorac Surg 43:778–782

    Article  PubMed  Google Scholar 

  42. Feng ZX, Zhao LJ, Guan Y, Sun Y, Meng MB, Ji K, Wang P (2013) Identification of risk factors and characteristics of supraclavicular lymph node metastasis in patients with small cell lung cancer. Med Oncol 30:493

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (No. 20790993 and No. 24590242 to H. Oshiro, No. 24700501 to T. Nagai), Exploratory Research from the Yokohama Foundation for Advancement of Medical Science (to H. Oshiro), Medical Research from Tokyo Medical University Cancer Center (to H. Oshiro).

Conflict of interest

We declare that we have no conflict of interest regarding this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Oshiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oshiro, H., Fukumura, H., Nagahama, K. et al. Establishment of successively transplantable rabbit VX2 cancer cells that express enhanced green fluorescent protein. Med Mol Morphol 48, 13–23 (2015). https://doi.org/10.1007/s00795-014-0071-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-014-0071-2

Keywords

Navigation