Halo(natrono)archaea from hypersaline lakes can utilize sulfoxides other than DMSO as electron acceptors for anaerobic respiration


Dimethylsulfoxide (DMSO) has long been known to support anaerobic respiration in a few species of basically aerobic extremely halophilic euryarchaea living in hypersaline lakes. Recently, it has also been shown to be utilized as an additional electron acceptor in basically anaerobic sulfur-reducing haloarchaea. Here we investigated whether haloarchaea would be capable of anaerobic respiration with other two sulfoxides, methionine sulfoxide (MSO) and tetramethylene sulfoxide (TMSO). For this, anaerobic enrichment cultures were inoculated with sediments from hypersaline salt and soda lakes in southwestern Siberia and southern Russia. Positive enrichments were obtained for both MSO and TMSO with yeast extract but not with formate or acetate as the electron donor. Two pure cultures obtained from salt lakes, either with MSO or TMSO, were obligate anaerobes closely related to sulfur-reducing Halanaeroarchaeum sulfurireducens, although the type strain of this genus was unable to utilize any sulfoxides. Two pure cultures isolated from soda lakes were facultatively anaerobic alkaliphilic haloarchaea using O2, sulfur and sulfoxides as the electron acceptors. One isolate was identical to the previously described sulfur-reducing Natrarchaeobaculum sulfurireducens, while another one, enriched at lower alkalinity, is forming a new species in the genus Halobiforma. Since all isolates enriched with either MSO or TMSO were able to respire all three sulfoxides including DMSO and the corresponding activities were cross-induced, it suggest that a single enzyme of the DMSO-reductase family with a broad substrate specificity is responsible for various sulfoxide-dependent respiration in haloarchaea.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. Andrei A-S, Banciu HL, Oren A (2012) Living with salt: metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiol Lett 330:1–9

    CAS  Article  Google Scholar 

  2. Antunes A, Taborda M, Huber R, Moissl C, Nobre MF, da Costa MS (2008) Halorhabdus tiamatea sp. nov., a non-pigmented extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 58:215–220

    CAS  Article  Google Scholar 

  3. Bilous PT, Weiner JH (1985) Dimethyl sulfoxide reductase activity by anaerobically grown Escherichia coli HB101. J Bacteriol 162:1151–1155

    CAS  Article  Google Scholar 

  4. Boschi-Muller S, Branlant G (2014) Methionine sulfoxide reductase: Chemistry, substrate binding, recycling process and oxidase activity. Bioorg Chem 57:222–230

    CAS  Article  Google Scholar 

  5. Ezraty B, Bos J, Barras F, Aussel L (2005) Methionine sulfoxide reduction and assimilation in Escherichia coli: new role for the biotin sulfoxide reductase BisC. J Bacteriol 187:231–237

    CAS  Article  Google Scholar 

  6. Kiragosyan K, Picard M, Sorokin DY, Dijkstra J, Klok JB, Roman P, Janssen AJ (2020) Effect of dimethyl disulfide on the sulfur formation and microbial community composition during the biological H2S removal from sour gas streams. J Hazard Mater 386:121916

    CAS  Article  Google Scholar 

  7. Lovelock JE, Maggs RJ, Rasmussen RA (1972) Atmospheric dimethyl sulfide and the natural sulphur cycle. Nature 237:452–453

    CAS  Article  Google Scholar 

  8. Maupine-Furlow JA (2018) Methionine sulfoxide reductase of archaea. Antioxydants 7:124

    Article  Google Scholar 

  9. Meganathan R, Schrementi J (1987) Tetrahydrothiophene 1-oxide as an electron acceptor for Escherichia coli. J Bacteriol 169:2862–2865

    CAS  Article  Google Scholar 

  10. Nohara T, Fujiwara Y, Kudo R, Yamaguchi K, Ikeda T, Murakami K, Ono M, Kajimoto T, Takeya M (2014) Isolation and characterization of new onionins A2 and A3 from Allium cepa, and of onionins A1, A2, and A3 fromAllium fistulosum. Chem Pharm Bull 62:1141–1143

    CAS  Article  Google Scholar 

  11. Oren A (1991) Anaerobic growth of archaeobacteria by reduction of fumarate. J Gen Microbiol 137:1387–1390

    CAS  Article  Google Scholar 

  12. Oren A (2006) The order Halobacteriales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes. A handbook on the biology of bacteria, vol 3, 3rd edn. Springer, New York, pp 113–164

  13. Oren A (2013) Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Front Microbiol 4:315

    Article  Google Scholar 

  14. Oren A, Trüper HG (1990) Anaerobic growth of halophilic archaeobacteria by reduction of dimethylsulfoxide and trimethylamine N-oxide. FEMS Microbiol Lett 70:33–36

    CAS  Article  Google Scholar 

  15. Pfennig N, Lippert KD (1966) Über das Vitamin B12-bedürfnis phototropher Schwefelbacterien. Arch Microbiol 55:245–256

    CAS  Google Scholar 

  16. Sorokin DY, Kublanov IV, Gavrilov SN, Rojo D, Roman P, Golyshin PN, Slepak VZ, Smedile F, Ferrer M, Messina E, La Cono V, Yakimov MM (2016a) Elemental sulfur and acetate can support life of a novel strictly anaerobic haloarchaeon. ISME J 10:240–252

    CAS  Article  Google Scholar 

  17. Sorokin DY, Kublanov IV, Yakimov M, Rijpstra WIC, Sinninghe Damsté JS (2016b) Halanaeroarchaeum sulfurireducens gen. nov., sp. nov., a first obligately anaerobic sulfur-respiring haloarchaeon from hypersaline lakes. Int J Syst Evol Microbiol 66:2377–2381

    CAS  Article  Google Scholar 

  18. Sorokin DY, Kublanov IV, Yakimov M, Rijpstra WIC, Sinninghe Damsté JS (2016c) Halanaeroarchaeum sulfurireducens gen. nov., sp. nov., a first obligately anaerobic sulfur-respiring haloarchaeon from hypersaline lakes. Int J Syst Evol Microbiol 66:2377–2381

    CAS  Article  Google Scholar 

  19. Sorokin DY, Messina E, Smedile F, Roman P, Sinninghe Damste JS, Ciordia S, del Carmen MM, Ferrer M, Golyshin PN, Kublanov IV, Samarov NI, Toshchakov SV, La Cono V, Yakimov MM (2017) Discovery of the anaerobic lithoheterotrophic haloarchaea, ubiquitous in hypersaline habitats. ISME J 11:1245–1260

    CAS  Article  Google Scholar 

  20. Sorokin DY, Messina E, La Cono V, Ferrer M, Ciordia S, del Carmen MM, Toshchakov SV, Golyshin PN, Yakimov MM (2018) Sulfur respiration in a group of facultatively anaerobic natronoarchaea ubiquitous in hypersaline soda lakes. Front Microbiol 9:2359

    Article  Google Scholar 

  21. Sorokin DY, Yakimov MM, Messina E, Merkel AY, Bale NJ, Sinninghe Damste JS (2019) Natronolimnobius sulfurireducens sp. nov., and Halalkaliarchaeum desulfuricum gen. nov., sp. nov., the first sulfur-respiring alkaliphilic haloarchaea from hypersaline alkaline lakes. Int J Syst Evol Microbiol 69:2662–2673

    CAS  Article  Google Scholar 

  22. Sorokin DY, Merkel AY, Messina E, Yakimov MM, Itoh T, Mesbah NM, Wiegel J, Oren A (2020) Reclassification of the genus Natronolimnobius: proposal of two new genera, Natronolimnohabitans gen. nov. to accommodate Natronolimnobius innermongolicus and Natrarchaeobaculum gen. nov. to accommodate Natronolimnobius aegyptiacus and Natronolimnobius sulfurireducens. Int J Syst Evol Microbiol 70:3399–3405

    CAS  Article  Google Scholar 

  23. Tarrago L, Gladyshev V (2012) Recharging oxidative protein repair: catalysis by methionine sulfoxide reductases towards their amino acid, protein, and model substrates. Biochemistry (Moscow, English Translation) 77:1097–1117

    CAS  Article  Google Scholar 

  24. Weissbach H, Etienne F, Hoshi T, Heinemann SH, Lowther WT, Matthews B, St. John G, Nathan C, Brot N, (2002) Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function. Arch Biochem Biophys 397:172–178

    CAS  Article  Google Scholar 

  25. Werner J, Ferrer M, Michel G, Mann AJ, Huang S, Juarez S, Ciordia S, Albar JP, Alcaide M, La Cono V, Yakimov MM, Antunes A, Taborda M, da Costa MS, Hai T, Glöckner FO, Golyshina OV, Golyshin PN, Teeling H, The MAMBA Consortium (2014) Halorhabdus tiamatea: proteogenomics and glycosidase activity measurements identify the first cultivated euryarchaeon from a deep-sea anoxic brine lake as potential polysaccharide degrader. Environ Microbiol 16:2525–2537

    CAS  Article  Google Scholar 

  26. Wood PM (1981) The redox potential for dimethyl sulphoxide reduction to dimethyl sulphide. Evaluation and biochemical implications. FEBS Lett 134:11–14

    Article  Google Scholar 

  27. Xu X-W, Oren A (2016) Halobiforma. In: Bergey’s manual of systematics of Archaea and Bacteria, Bergey’s Manual Trust. Wiley. https://doi.org/10.1002/9781118960608.gbm01336

  28. Zinder SH, Brock TD (1978) Dimethyl sulfoxide as an electron acceptor for anaerobic growth. Arch Microbiol 116:35–40

    CAS  Article  Google Scholar 

Download references


This work was supported in part by the Russian Foundation for Basic Research (19-04-00401) and by the Russian Ministry of Higher Education and Science.

Author information



Corresponding author

Correspondence to Dimitry Y. Sorokin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The 16S-rRNA gene sequences obtained in this study were deposited in the GenBank under the accession numbers MT928301–MT928305.

Communicated by S. Albers.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 122 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sorokin, D.Y., Roman, P. & Kolganova, T.V. Halo(natrono)archaea from hypersaline lakes can utilize sulfoxides other than DMSO as electron acceptors for anaerobic respiration. Extremophiles (2021). https://doi.org/10.1007/s00792-021-01219-y

Download citation


  • Haloarchaea
  • Hypersaline lakes
  • Methionine sulfoxide
  • Tetramethylene sulfoxide
  • Anaerobic respiration