Biofilm and planktonic microbial communities in highly acidic soil (pH < 3) in the Soos National Nature Reserve, Czech Republic

Abstract

Biofilm formation is a typical life strategy used by microorganisms populating acidic water systems. The same strategy might be used by microbes in highly acidic soils that are, however, neglected in this regard. In the present study, the microbial community in such highly acidic soil in the Soos National Nature Reserve (Czech Republic) has been investigated using high-throughput DNA sequencing and the organisms associated with biofilm life mode and those preferring planktonic life were distinguished using the biofilm trap technique. Our data show the differences between biofilm and planktonic microbiota fraction, although the majority of the organisms were capable of using both life modes. The by far most abundant prokaryotic genus was Acidiphilium and fungi were identified among the most abundant eukaryotic elements in biofilm formations. On the other hand, small flagellates from diverse taxonomical groups predominated in plankton. The application of cellulose amendment as well as the depth of sampling significantly influenced the composition of the detected microbial community.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aguilera A, Souza-Egipsy V, González-Toril E, Rendueles O, Amils R (2010) Eukaryotic microbial diversity of phototrophic microbial mats in two Icelandic geothermal hot springs. Int Microbiol 13:21–32

    CAS  PubMed  Google Scholar 

  2. Aguilera A, Olsson S, Puerte-Sánchez F (2016) Physiological and phylogenetic diversity of acidophilic eukaryotes. In: Quatrini R, Johnson DB (eds) Acidophiles. Life in extremely acidic environment. Caister Academic Press, Norfolk, pp 107–118

    Google Scholar 

  3. Aitchison J (1986) The statistical analysis of compositional data. Monographs on statistics and applied probability (reprinted in 2003). Chapman and Hall, London

    Google Scholar 

  4. Aliaga-Goltsman DS, Comolli LR, Thomas BC, Banfield JF (2015) Community transcriptomics reveals unexpected high microbial diversity in acidophilic biofilm communities. ISME J 9:1014–1023

    CAS  PubMed  Article  Google Scholar 

  5. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Article  Google Scholar 

  6. Amaral-Zettler LA, Gomez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Eukaryotic diversity in Spain’s river of fire. Nature 417:137

    CAS  PubMed  Article  Google Scholar 

  7. Amaral-Zettler LA, Messerli MA, Laatsch AD, Smith PJS, Sorgin ML (2003) From genes to genomes: beyond biodiversity in Spain's Rio Tinto. Biol Bull 204:205–209

    CAS  PubMed  Article  Google Scholar 

  8. Andersen RA (1989) Absolute orientation of the flagellar apparatus of Hibberdia magna comb. nov. (Chrysophyceae). Nord J Bot 8:653–669

    Article  Google Scholar 

  9. Apprill A, McNally S, Parsons R, Weber L (2015) Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol 75:129–137

    Article  Google Scholar 

  10. Bacelar-Nicolau P, Johnson DB (1999) Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures. Appl Environ Microbiol 65:585–590

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152

    CAS  PubMed  Article  Google Scholar 

  12. Baker BJ, Lutz MA, Dawson SC, Bond PL, Banfield JF (2004) Metabolically active eukaryotic communities in extremely acidic mine drainage. Appl Environ Microbiol 70(10):6264–6271

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Baker BJ, Tyson GW, Goosherst L, Banfield JF (2009) Insights into the diversity of eukaryotes in acid mine drainage biofilm communities. Appl Environ Microbiol 75(7):2192–2199

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Bond PL, Smriga SP, Banfield JF (2000) Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66(9):3842–3849

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Brake SS, Hasiotis ST (2010) Eukaryote-dominated biofilms and their significance acidic environments. Geomicrobiol J 27:534–558

    Article  Google Scholar 

  16. Brož K (1998) Vývoj ochrany Národní přírodní rezervace Soos. In: Chocholoušková Z (ed) Lederer F. Flora a vegetace minerálních pramenů a rašelinišť NPR Soos, Plzeň, pp 1–2

    Google Scholar 

  17. Brožek B, Dvořák J (1971) Geomorfologické, hydrogeologické a geochemické poměry Státní přírodní rezervace “Soos” u Františkových Lázní. Čs Ochr Prír 11:157–193

    Google Scholar 

  18. Burmølle M, Kjøller A, Sørensen SJ (2012) An invisible workforce: biofilms in the soil. In: Lear G, Lewis GD (eds) Microbial biofilms: current research and applications. Caister Academic Press, Norfolk

    Google Scholar 

  19. Bystrianský L, Hujslová M, Hršelová H, Řezáčová V, Němcová L, Šimsová J, Gryndlerová H, Kofroňová O, Benada O, Gryndler M (2019) Observations on two microbial life strategies in soil: planktonic and biofilm forming microorganisms are separable. Soil Biol Biochem 136:107535

    Article  CAS  Google Scholar 

  20. Chocholoušková Z, Vaněčková I (1998) Flóra a vegetace cévnatých rostlin NPR Soos a vybraných lokalit Slavkovského lesa. (Flora and vegetation of vascular plants in National Natural Reserve Soos). In: Lederer F, Chocholoušková Z (eds) Flora a vegetace minerálních pramenů a rašelinišť. NPR Soos, Plzeň, pp 68–107

    Google Scholar 

  21. Dedysh SN (2011) Cultivating uncultured bacteria from northern wetlands: knowledge gained and remaining gaps. Front Microbiol 2:184. https://doi.org/10.3389/fmicb.2011.00184

    Article  PubMed  PubMed Central  Google Scholar 

  22. Delavat F, Lett M-C, Lièvremont D (2013) Yeast and bacterial diversity along a transect in an acidic, As–Fe rich environment revealed by cultural approaches. Sci Total Environ 463–464:823–828

    PubMed  Article  CAS  Google Scholar 

  23. Dirren S, Posch T (2016) Promiscuous and specific bacterial symbiont acquisition in the amoeboid genus Nuclearia (Opisthokonta). FEMS Microbiol Ecol 92(8):fiw105

    PubMed  Article  CAS  Google Scholar 

  24. Edgar RC, Flyvbjerg H (2015) Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31:3476–3482

    CAS  PubMed  Article  Google Scholar 

  25. Ekelund F, Daugbjerg N, Fredslund L (2004) Phylogeny of Heteromita, Cercomonas and Thaumatomonas based on SSU rDNA sequences, including the description of Neocercomonas jutlandica sp. nov., gen. nov. Eur J Protistol 40:119–135

    Article  Google Scholar 

  26. Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176

    CAS  Article  Google Scholar 

  27. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    CAS  PubMed  Article  Google Scholar 

  28. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575

    CAS  PubMed  Article  Google Scholar 

  29. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    CAS  PubMed  Article  Google Scholar 

  30. Golyshina OV, Bargiela R, Golyshin PN (2019) Cuniculiplasmataceae, their ecogenomic and metabolic patterns, and interactions with ‘ARMAN’. Extremophiles 23:1–7

    PubMed  Article  Google Scholar 

  31. Gostinčar C, Ohm RA, Kogej T, Sonjak S, Turk M, Zajc J, Zalar P, Grube M, Sun H, Han J, Sharma A, Chiniquy J, Ngan CY, Lipzen A, Barry K, Grigoriev IV, Gunde-Cimerman N (2014) Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genom 15:549

    Article  CAS  Google Scholar 

  32. Grossmann L, Bock C, Schweikert M, Boenigk J (2015) Small but manifold—hidden diversity in "Spumella-like flagellates". J Eukaryot Microbiol 63:419–439

    Article  Google Scholar 

  33. Gryndler M, Trilčová J, Hršelová H, Streiblová E, Gryndlerová H, Jansa J (2013) Tuber aestivum Vittad. mycelium quantified: advantages and limitations of a qPCR approach. Mycorrhiza 23:341–348

    PubMed  Article  Google Scholar 

  34. Hájek M, Vízdal P (1998) Prostorová hydrologická struktura NPR Soos (Spatial hydrological structure of National Natural Reserve Soos). In: Lederer F, Chocholoušková Z (eds) Flora a vegetace minerálních pramenů a rašelinišť. NPR Soos, Plzeň, pp 3–13

    Google Scholar 

  35. Hallberg KB, Coupland K, Kimura S, Johnson DB (2006) Macroscopic streamer growths in acidic, metal-rich mine waters in North Wales consist of novel and remarkably simple bacterial communities. Appl Environ Microbiol 72(3):2022–2030

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Hao C, Wang L, Gao Y, Zhang L, Dong H (2010) Microbial diversity in acid mine drainage of Xiang Mountain sulfide mine, Anhui Province, China. Extremophiles 14:465–474

    PubMed  Article  Google Scholar 

  37. Hiraishi A, Nagashima KVP, Matsuura K, Shimada K, Takaihi S, Wakao N, Katayama Y (1998) Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria: its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb. nov. Int J Syst Bacteriol 48:1389–1398

    CAS  PubMed  Article  Google Scholar 

  38. Hujslová M, Gryndler M (2019) Fungi in biofilms of highly acidic soils. In: Tiquia-Arashiro S, Grube M (eds) Fungi in extreme environments: ecological role and biotechnological significance. Springer, Cham

    Google Scholar 

  39. Hujslová M, Kubátová A, Bukovská P, Chudíčková M, Kolařík M (2017) Extremely acidic soils are dominated by species-poor and highly specific fungal communities. Microb Ecol 73:321–337

    PubMed  Article  CAS  Google Scholar 

  40. Hujslová M, Kubátová A, Chudíčková M, Kolařík M (2010) Diversity of fungal communities in saline and acidic soils in the Soos National Natural Reserve. Czech Republic, Mycol Prog 9:1–15

    Google Scholar 

  41. Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE, Lindahl BD (2012) New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677

    CAS  PubMed  Article  Google Scholar 

  42. Ivanova AA, Kulichevskaya IS, Merkel AY, Toshchakov SV, Dedysh SN (2016) High diversity of Planctomycetes in soils of two lichen-dominated sub-arctic ecosystems of Northwestern Siberia. Front Microbiol 7:2065. https://doi.org/10.3389/fmicb.2016.02065

    Article  PubMed  PubMed Central  Google Scholar 

  43. Johnson DB (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol 27:307–317

    CAS  Article  Google Scholar 

  44. Johnson DB (2012) Geomicrobiology of extremely acidic subsurface environments. FEMS Microbiol Ecol 81:2–12

    CAS  PubMed  Article  Google Scholar 

  45. Jones DS, Albrecht HL, Dawson KS, Schaperdoth I, Freeman KH, Pi Y, Pearson A, Macalady JL (2012) Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm. ISME J 6(1):158–170

    CAS  PubMed  Article  Google Scholar 

  46. Justice NB, Norman A, Brown CT, Singh A, Thomas BC, Banfield JF (2014) Comparison of environmental and isolate sulfobacillus genomes reveals diverse carbon, sulfur, nitrogen, and hydrogen metabolisms. BMC Genom 15:1107

    Article  CAS  Google Scholar 

  47. Ko D, Yoo G, Yun S-T, Jun S-C, Chung H (2017) Bacterial and fungal community composition across the soil depth profiles in a fallow field. J Ecol Environ 41:34

    Article  Google Scholar 

  48. Kulichevskaya IS, Ivanova AO, Baulina OI, Bodelier PLE, Damsté JS, Dedysh SN (2008) Singulisphaera acidiphila gen. nov., sp. nov., a non-filamentous, Isosphaera-like planctomycete from acidic northern wetlands. Int J Syst Evol Microbiol 58:1186–1193

    CAS  PubMed  Article  Google Scholar 

  49. Lear G, Niyogi D, Harding J, Dong Y, Lewis G (2009) Biofilm bacterial community structure in streams affected by acid mine drainage. Appl Environ Microbiol 75(11):3455–3460

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Lejzerowicz F, Esling P, Pillet L, Wilding TA, Black KD, Pawlowski J (2015) High-throughput sequencing and morphology perform equally well for benthic monitoring of marine ecosystems. Sci Rep 5:13932. https://doi.org/10.1038/srep13932

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lennon JT, Lehmkuhl BK (2016) A trait-based approach to bacterial biofilms in soil. Environ Microbiol 18(8):2732–2742

    CAS  PubMed  Article  Google Scholar 

  52. Libkind D, Russo G, van Broock MR (2014) Yeasts from extreme aquatic environments: hyperacidic freshwaters. In: Jones EBG, Hyde KD, Pang K-L (eds) Freshwater Fungi: and Fungal-like Organisms. De Gruyter, Berlin, pp 443–463

    Google Scholar 

  53. López-Archilla AI, Amils R (1999) A comparative ecological study of two acidic rivers in southwestern Spain. Microb Ecol 38:146–156

    PubMed  Article  Google Scholar 

  54. López-Archilla AI, Gérard E, Moreira D, López-García P (2004) Macrofilamentous microbial communities in the metal-rich and acidic River Tinto, Spain. FEMS Microbiol Lett 235:221–228

    PubMed  Article  Google Scholar 

  55. Macalady JL, Jones DS, Lyon EH (2007) Extremely acidic, pendulous cave wall biofilms from the Frasassi cave system, Italy. Environ Microbiol 9(6):1402–1414

    CAS  PubMed  Article  Google Scholar 

  56. Mahé F, Mayor J, Bunge J, Chi J, Siemensmeyer T, Stoeck T, Wahl B, Paprotka T, Filker S, Dunthorn M (2014) Comparing high-throughput platforms for sequencing the V4 region of SSU-rDNA in environmental microbial eukaryotic diversity surveys. J Eukaryot Microbiol 62(3):338–345

    PubMed  Article  CAS  Google Scholar 

  57. Mann EE, Wozniak DJ (2012) Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev 36(4):893–916

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Méndez-García C, Peláez AI, Mesa V, Sánchez J, Golyshina OV, Ferrer M (2015) Microbial diversity and metabolic networks in acid mine drainage habitats. Front Microbiol 6:475. https://doi.org/10.3389/fmicb.2015.00475

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mesa V, Gallego JLR, Gonzáles-Gil R, Lauga B, Sánchez J, Méndez-García PAI (2017) Bacterial, archaeal, and eukaryotic diversity across distinct microhabitats in an acid mine drainage. Front Microbiol 8:1756. https://doi.org/10.3389/fmicb.2017.01756

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mosier AC, Justice NB, Bowen BP, Baran R, Thomas BC, Northen TR, Banfield JF (2013) Metabolites associated with adaptation of microorganisms to an acidophilic, metal-rich environment identified by stable-isotope-enabled metabolomics. mBio 4(2):00484-12. https://doi.org/10.1128/mBio.00484-12

    Article  Google Scholar 

  61. Mosier AC, Miller CS, Frischkorn KR, Ohm RA, Li Z, LaButti K, Lapidus A, Lipzen A, Chen C, Johnson J, Lindquist EA, Pan C, Hettich RL, Grigoriev IV, Singer SW, Banfield JF (2016) Fungi contribute critical but spatially varying roles in nitrogen and carbon cycling in acid mine drainage. Front Microbiol 7:238

    PubMed  PubMed Central  Article  Google Scholar 

  62. Mylnikov AP, Weber F, Jürgens K, Wylezich C (2015) Massisteria marina has a sister: Massisteria voersi sp. Nov., a rare species isolated from coastal waters of the Baltic Sea. Eur J Protistol 51:299–310

    PubMed  Article  Google Scholar 

  63. Novik G, Savich V, Kiseleva E (2015) An insight into beneficial Pseudomonas bacteria. In: Shah MM (ed) Microbiology in agriculture and human health. IntechOpen, Vienna. https://doi.org/10.5772/60502

    Google Scholar 

  64. Oggerin M, Tornos F, Rodriguez N, Pascual L, Amils R (2016) Fungal iron biomineralization in Rio Tinto. Minerals 6(2):37. https://doi.org/10.3390/min6020037

    CAS  Article  Google Scholar 

  65. O'Kelly CJ, Nerad TA (1999) Malawimonas jakobiformis n. gen., n. sp. (Malawimonadidae n. fam.): a Jakoba-like heterotrophic nanoflagellate with discoidal mitochondrial cristae. J Eukaryot Microbiol 46:522–531

    Article  Google Scholar 

  66. Parada AE, Needham DM, Fuhrman JA (2016) Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 18(5):1403–1414

    CAS  PubMed  Article  Google Scholar 

  67. Quatrini R, Johnson DB (2018) Microbiomes in extremely acidic environments: functionalities and interactions that allow survival and growth of prokaryotes at low pH. Curr Opin Microbiol 43:139–147

    CAS  PubMed  Article  Google Scholar 

  68. Ram RJ, VerBerkmoes NC, Thelen MP, Tyson GW, Baker BJ, Blake RC II, Shah M, Hettich RL, Banfield JF (2005) Community proteomics of a natural microbial biofilm. Science 308:1915–1920

    CAS  PubMed  Article  Google Scholar 

  69. Riemann B, Havskum H, Thingstad F, Bernard C (1995) The role of mixotrophy in pelagic environments. In: Joint I (ed) Molecular ecology of aquatic microbes. Springer, Berlin, pp 87–114

    Google Scholar 

  70. Sánchez-Andrea I, Rodríguez N, Amils R, Sanz JL (2011) Microbial diversity in anaerobic sediments at Río Tinto, a naturally acidic environment with a high heavy metal content. Appl Environ Microbiol 77(17):6085–6093

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. Santos P, Pinhal I, Rainey FA, Empadinhas N, Costa J, Fields B, Benson R, Veríssimo A, da Costa MS (2003) Gamma-Proteobacteria Aquicella lusitana gen. nov., sp. nov., and Aquicella siphonis sp. nov. infect Protozoa and require activated charcoal for growth in laboratory media. Appl Environ Microbiol 69(11):6533–6540

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Stoeck T, Bass D, Nebel M, Cristen R, Jones MDM, Breiner H-W, Richards TA (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19(Suppl 1):21–23

    CAS  PubMed  Article  Google Scholar 

  73. Štursová M, Žifčáková L, Leigh MB, Burgess R, Baldrian P (2012) Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol Ecol 80:735–746

    PubMed  Article  CAS  Google Scholar 

  74. Sun W, Xiao T, Sun M, Dong Y, Ning Z, Xiao E, Tang S, Li J (2015) Diversity of the sediment microbial community in the Aha watershed (southwest China) in response to acid mine drainage pollution gradients. Appl Environ Microbiol 81(15):4874–4884

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. TerBraak CJF, Šmilauer P (2012) Canoco reference manual and user’s guide: software for ordination (version 5). Microcomputer Power, Ithaca

    Google Scholar 

  76. Větrovský T, Baldrian P (2013) Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol Fertil Soils 49:1027–1037

    Article  Google Scholar 

  77. Volant A, Héry M, Desoeuvre A, Casiot C, Morin G, Bertin PN, Bruneel O (2016) Spatial distribution of eukaryotic communities using high-throughput sequencing along a pollution gradient in the arsenic-rich creek sediments of Carnoulès mine, France. Microb Ecol 72:608–620

    CAS  PubMed  Article  Google Scholar 

  78. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky J, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  79. Yelton AP, Comolli LR, Justice NB, Castelle C, Denef VJ, Thomas BC, Banfield JF (2013) Comparative genomics in acid mine drainage biofilm communities reveals metabolic and structural differentiation of co-occurring archaea. BMC Genom 14:485

    CAS  Article  Google Scholar 

  80. Yoshida M, Nakayama T, Inouye I (2009) Nuclearia thermophila sp. nov. (Nucleariidae), a new nucleariid species isolated from Yunoko Lake in Nikko (Japan). Eur J Protistol 45:147–155

    PubMed  Article  Google Scholar 

  81. Yurkov A (2017) Yeasts in forest soils. In: Buzzini P, Lachance MA, Yurkov A (eds) Yeasts in natural ecosystems: diversity. Springer, Cham, pp 87–116

    Google Scholar 

  82. Zajc J, Gostinčar C, Černoša A, Gunde-Cimerman N (2019) Stress-tolerant yeasts: opportunistic pathogenicity versus biocontrol potential. Genes. https://doi.org/10.3390/genes10010042

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zirnstein I, Arnold T, Krawczyk-Bärsch E, Jenk U, Bernhard G, Röske I (2012) Eukaryotic life in biofilms formed in a uranium mine. Microbiologyopen 1(2):83–94

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation (project no. 17-09946S) and Research Infrastructure Pro-NanoEnviCZ (supported by the Ministry of Education, Youth and Sports of the Czech Republic, reg. no. CZ.02.1.01/0.0/0.0/16_013/0001821).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martina Hujslová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by A. Oren.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hujslová, M., Gryndlerová, H., Bystrianský, L. et al. Biofilm and planktonic microbial communities in highly acidic soil (pH < 3) in the Soos National Nature Reserve, Czech Republic. Extremophiles 24, 577–591 (2020). https://doi.org/10.1007/s00792-020-01177-x

Download citation

Keywords

  • Cellulose
  • Soil depth
  • Acidiphilium
  • Chromulina
  • Phaeotremella