Advertisement

Extremophiles

, Volume 22, Issue 4, pp 651–663 | Cite as

Effect of salinity on diazotrophic activity and microbial composition of phototrophic communities from Bitter-1 soda lake (Kulunda Steppe, Russia)

  • Zorigto Namsaraev
  • Olga Samylina
  • Marina Sukhacheva
  • Gennadii Borisenko
  • Dimitry Y. Sorokin
  • Tatiana Tourova
Original Paper

Abstract

Bitter-1 is a shallow hypersaline soda lake in Kulunda Steppe (Altai region, Russia). During a study period between 2005 and 2016, the salinity in the littoral area of the lake fluctuated within the range from 85 to 400 g/L (in July of each year). Light-dependent nitrogen fixation occurred in this lake up to the salt-saturating conditions. The rates increased with a decrease in salinity, both under environmental conditions and in laboratory simulations. The salinities below 100 g/L were favorable for light-dependent nitrogen fixation, while the process was dramatically inhibited above 200 g/L salts. The analysis of nifH genes in environmental samples and in enrichment cultures of diazotrophic phototrophs suggested that anaerobic fermenting and sulfate-reducing bacteria could participate in the dark nitrogen fixation process up to soda-saturating conditions. However, we cannot exclude the possibility that haloalkaliphilic nonheterocystous cyanobacteria (Euhalothece sp. and Geitlerinema sp.) and anoxygenic purple sulfur bacteria (Ectothiorhodospira sp.) might also play a role in the process at light conditions. The heterocystous cyanobacterium Nodularia sp. develops at low salinity (below 80 g/L) that is not characteristic for Bitter-1 Lake and thus does not make a significant contribution to the nitrogen fixation in this lake.

Keywords

Nitrogen fixation Phototrophic bacteria Sulfate-reducing bacteria Hypersaline Soda lakes 

Notes

Acknowledgements

This work was supported by the Program of fundamental research for state academies (No. 01201350928), Russian Academy of Sciences and Federal Agency of Scientific Organizations (Project Nos. 0104-2018-0033 and 0104-2018-0030). ZN was supported by the NRC “Kurchatov Institute”. DS was supported by the the Gravitation-SIAM program of the Dutch Ministry of Education and Science (24002002).

References

  1. Axler RP, Gersberg RM, Paulson LJ (1978) Primary productivity in meromictic Big Soda Lake, Nevada. Great Basin Nat 38:187–192Google Scholar
  2. Berman-Frank I, Lundgren P, Falkowski P (2003) Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154:157–164CrossRefPubMedGoogle Scholar
  3. Bolhuis H, Severin I, Confurius-Guns V, Wollenzien UIA, Stal LJ (2010) Horizontal transfer of the nitrogen fixation gene cluster in the cyanobacterium Microcoleus chthonoplastes. ISME J 4:121–130CrossRefPubMedGoogle Scholar
  4. Boltyanskaya YV, Kevbrin VV, Lysenko AM, Tourova TP, Zhilina TN, Kolganova TV, Osipov GA (2007) Halomonas mongoliensis sp. nov. and Halomonas kenyensis sp. nov., new haloalkaliphilic denitrifiers capable of N2O reduction, isolated from soda lakes. Microbiology (Mikrobiologiya) 76:739–747CrossRefGoogle Scholar
  5. Bryantseva IA, Tourova TP, Kostrikina NA, Gorlenko VM, Kovaleva OL (2010) Ectothiorhodospira magna sp. nov., a new large alkaliphilic purple sulfur bacterium. Microbiology (Mikrobiologiya) 79:780–790CrossRefGoogle Scholar
  6. Edwards U, Rogall T, Bloeker H, Ende MD, Boeettger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Nucleic Acids Res 17:7843–7853CrossRefPubMedPubMedCentralGoogle Scholar
  7. Foti MJ, Sorokin DY, Lomans B, Mussman M, Zacharova EE, Pimenov NV, Kuenen JG, Muyzer G (2007) Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Appl Environ Microbiol 73:2093–2100CrossRefPubMedPubMedCentralGoogle Scholar
  8. Foti MJ, Sorokin DY, Zacharova EE, Pimenov NV, Kuenen JG, Muyzer G (2008) Bacterial diversity and activity along a salinity gradient in soda lakes of the Kulunda Steppe (Altai, Russia). Extremophiles 12:133–145CrossRefPubMedGoogle Scholar
  9. Garcia-Pichel F, Nübel U, Muyzer G (1998) The phylogeny of unicellular, extremely halotolerant cyanobacteria. Arch Microbiol 169:469–482CrossRefPubMedGoogle Scholar
  10. Gerasimenko LM, Dubinin AV, Mityushina LL, Zavarzin GA (1999) A microscopic green alga from soda lakes. Microbiology (Mikrobiologiya) 68:610–614Google Scholar
  11. Grant WD (2006) Alkaline environments and biodiversity. In: Gerday C, Glansdorff N (eds) Extremophiles, in Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO. Eolss Publishers, Oxford. http://www.eolss.net. Accessed 15 Feb 2018
  12. Hardy RW, Holsten R, Jackson E, Burns R (1968) The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43:1185–1207CrossRefPubMedPubMedCentralGoogle Scholar
  13. Herbert RA (1975) Heterotrophic nitrogen fixation in shallow estuarine sediments. J Exp Mar Biol Ecol 18:215–225CrossRefGoogle Scholar
  14. Herbst DB (1998) Potential salinity limitations on nitrogen fixation in sediments from Mono Lake, California. Int J Salt Lake Res 7:261–274Google Scholar
  15. Isachenko BL (1934) Chloride, sulfate, and soda lakes of Kulunda Steppe. In: Kulundinskaya ekspeditsiya Akademii nauk SSSR 1931–1933 gg. (Kulunda Expedition of the USSR Academy of Sciences, 1931–1933). 1 (in Russian) Google Scholar
  16. Jellison R, Miller LG, Melack JM, Dana GL (1993) Meromixis in hypersaline Mono Lake, California. 2. Nitrogen fluxes. Limnol Oceanogr 38:1020–1039CrossRefGoogle Scholar
  17. Kompantseva EI, Komova AV, Sorokin DY (2010) Communities of anoxygenic phototrophic bacteria in the saline soda lakes of the Kulunda Steppe (Altai Krai). Microbiology (Mikrobiologiya) 79:89–95CrossRefGoogle Scholar
  18. Krienitz L, Schagerl M (2016) Tiny and tough: microphytes of East African soda lakes. In: Schagerl M (ed) Soda Lakes of East Africa. Springer International Publishing, Switzerland, pp 149–177Google Scholar
  19. Marusina AI, Boulygina ES, Kuznetsov BB, Tourova TP, Kravchenko IK, Gal’chenko VF (2001) A system of oligonucleotide primers for the amplification of nifH genes of different taxonomic groups of prokaryotes. Microbiology (Mikrobiologiya) 70:73–78CrossRefGoogle Scholar
  20. Medová H, Boldareva EN, Hrouzek P, Borzenko SV, Namsaraev ZB, Gorlenko VM, Namsaraev BB, Koblížek M (2011) High abundances of aerobic anoxygenic phototrophs in saline steppe lakes. FEMS Microbiol Ecol 76:393–400CrossRefPubMedGoogle Scholar
  21. Melack JM (1981) Photosynthetic activity of phytoplankton in tropical African Soda lakes. Hydrobiologia 81:71–85CrossRefGoogle Scholar
  22. Mikhodyuk OS, Gerasimenko LM, Akimov VN, Ivanovsky RN, Zavarzin GA (2008) Ecophysiology and polymorphism of the unicellular extremely natronophilic cyanobacterium Euhalothece sp. Z-M001 from Lake Magadi. Microbiology (Mikrobiologiya) 77:717–725CrossRefGoogle Scholar
  23. Namsaraev ZB (2009) Application of extinction coefficients for quantification of chlorophylls and bacteriochlorophylls. Microbiology (Mikrobiologiya) 78:794–797CrossRefGoogle Scholar
  24. Namsaraev ZB, Zaitseva SV, Gorlenko VM, Kozyreva LP, Namsaraev BB (2015) Microbial processes and factors controlling their activities in alkaline lakes of the Mongolian plateau. Chin J Oceanol Limnol 33:1391–1401CrossRefGoogle Scholar
  25. Oremland RS (1983) Hydrogen metabolism by decomposing cyanobacterial aggregates in Big Soda Lake, Nevada. Appl Environ Microbiol 45:1519–1525PubMedPubMedCentralGoogle Scholar
  26. Oremland RS (1990) Nitrogen fixation dynamics of two diazotrophic communities in Mono Lake, California. Appl Environ Microbiol 56:614–622PubMedPubMedCentralGoogle Scholar
  27. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348PubMedPubMedCentralGoogle Scholar
  28. Oren A (2011a) Diversity of halophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Japan, pp 309–325CrossRefGoogle Scholar
  29. Oren A (2011b) Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13:1908–1923CrossRefPubMedGoogle Scholar
  30. Reznikov AA, Mulikovskaya EP, Sokolov IY (1970) Methods for natural water analysis. Nedra, Moscow, p 118 (in Russian) Google Scholar
  31. Rippka R (1988) Isolation and purification of cyanobacteria. Meth Enzymol 167:3–27CrossRefPubMedGoogle Scholar
  32. Samylina OS, Sapozhnikov FV, Gainanova OY, Ryabova AV, Nikitin MA, Sorokin DY (2014) Algo-bacterial communities of the Kulunda Steppe (Altai Region, Russia) soda lakes. Microbiology (Mikrobiologiya) 83:849–860CrossRefGoogle Scholar
  33. Schultze-Lam S, Ferris FG, Sherwood-Lollar B, Gerits JP (1996) Ultrastructure and seasonal growth patterns of microbial mats in a temperate climate saline-alkaline lake: Goodenough lake, British Columbia, Canada. Can J Microbiol 42:147–161CrossRefGoogle Scholar
  34. Shapovalova AA, Khijniak TV, Tourova TP, Muyzer G, Sorokin DY (2008) Heterotrophic denitrification at extremely high salt and pH by haloalkaliphilic Gammaproteobacteria from hypersaline soda lakes. Extremophiles 12:619–625CrossRefPubMedPubMedCentralGoogle Scholar
  35. Sorokin DY (2017) Anaerobic haloalkaliphiles. In: Encyclopedia of Life Sciences. Wiley, Chichester.  https://doi.org/10.1002/9780470015902.a0027654
  36. Sorokin DY, Kuenen JG (2005) Alkaliphilic chemolithotrophs from soda lakes. FEMS Microbiol Ecol 52:287–295CrossRefPubMedGoogle Scholar
  37. Sorokin DY, Tourova TP, Henstra AM, Stams AJM, Galinski EA, Muyzer G (2008a) Sulfidogenesis at extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicata sp. nov.—a novel lineage of Deltaproteobacteria from hypersaline soda lakes. Microbiology (SGM) 154:1444–1453CrossRefGoogle Scholar
  38. Sorokin ID, Zadorina EV, Kravchenko IK, Boulygina ES, Tourova TP, Sorokin DY (2008b) Natronobacillus azotifigens gen. nov., sp. nov., an anaerobic diazotrophic haloalkaliphile from soda-rich habitats. Extremophiles 12:819–827CrossRefPubMedGoogle Scholar
  39. Sorokin DY, Abbas B, Tourova TP, Bumazhkin BK, Kolganova TV, Muyzer G (2014a) Sulfate-dependent acetate oxidation under extremely natron-alkaline conditions by syntrophic associations from hypersaline soda lakes. Microbiology (SGM) 160:723–732CrossRefGoogle Scholar
  40. Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis S, Mauzer G (2014b) Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18:791–809CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sorokin DY, Banciu HA, Muyzer G (2015a) Functional microbiology of soda lakes. Curr Opin Microbiol 25:88–96CrossRefPubMedGoogle Scholar
  42. Sorokin DY, Chernyh NA, Poroshina MN (2015b) Desulfonatronobacter acetoxydans sp. nov.: a first acetate-oxidizing, extremely salt-tolerant alkaliphilic SRB from a hypersaline soda lake. Extremophiles 19:899–907CrossRefPubMedPubMedCentralGoogle Scholar
  43. Spiridonova EM, Berg IA, Kolganova TV, Ivanovskii RN, Kuznetsov BB, Tourova TP (2004) An oligonucleotide primer system for amplification of the ribulose-1,5-bisphosphate carboxylase/oxygenase genes of bacteria of various taxonomic groups. Microbiology (Mikrobiologiya) 73:316–325CrossRefGoogle Scholar
  44. Tourova TP, Kovaleva OL, Sorokin DY, Muyzer G (2010) Ribulose-1,5-bisphosphate carboxylase/oxygenase genes as a functional marker for chemolithoautotrophic halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology (UK) 156:2016–2025CrossRefGoogle Scholar
  45. Tourova TP, Sorokin DY, Slobodova NV, Bumazhkin BK, Sukhacheva MV (2014) Diversity of diazotrophs in the sediments of saline and soda lakes analyzed with the use of the nifH gene as a molecular marker. Microbiology (Mikrobiologiya) 83:634–647CrossRefGoogle Scholar
  46. Tsyrenova DD, Bryanskaya AV, Namsaraev ZB, Akimov VN (2011) Taxonomic and ecological characterization of cyanobacteria from some brackish and saline lakes of Southern Transbaikal Region. Microbiology (Mikrobiologiya) 80:216–227CrossRefGoogle Scholar
  47. Vonshak A (1997) Spirulina platensis (Arthrospira) physiology, cell-biology and biotechnology. Taylor & Francis, London. ISBN 0-7484-0674-3Google Scholar
  48. Voronikhin NN (1929) Materials for research on the algological vegetation of Kulunda Steppe. Izvestiya Glavnogo Botanicheskogo Sada SSSR 28:12–40 (in Russian) Google Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Zorigto Namsaraev
    • 1
  • Olga Samylina
    • 2
  • Marina Sukhacheva
    • 3
  • Gennadii Borisenko
    • 4
  • Dimitry Y. Sorokin
    • 2
    • 5
  • Tatiana Tourova
    • 2
  1. 1.NRC “Kurchatov Institute”MoscowRussia
  2. 2.Winogradsky Institute of Microbiology, Research Center of Biotechnology RASMoscowRussia
  3. 3.Institute of Bioengineering, Research Center of Biotechnology RASMoscowRussia
  4. 4.Soil Science FacultyMoscow State UniversityMoscowRussia
  5. 5.Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands

Personalised recommendations