Skip to main content
Log in

The α-l-fucosidase from Sulfolobus solfataricus

  • Review
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Glycoside hydrolases form hyperthermophilic archaea are interesting model systems for the study of catalysis at high temperatures and, at the moment, their detailed enzymological characterization is the only approach to define their role in vivo. Family 29 of glycoside hydrolases classification groups α-l-fucosidases involved in a variety of biological events in Bacteria and Eukarya. In Archaea the first α-l-fucosidase was identified in Sulfolobus solfataricus as interrupted gene expressed by programmed −1 frameshifting. In this review, we describe the identification of the catalytic residues of the archaeal enzyme, by means of the chemical rescue strategy. The intrinsic stability of the hyperthermophilic enzyme allowed the use of this method, which resulted of general applicability for β and α glycoside hydrolases. In addition, the presence in the active site of the archaeal enzyme of a triad of catalytic residues is a rather uncommon feature among the glycoside hydrolases and suggested that in family 29 slightly different catalytic machineries coexist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baranov PV, Gurvich OL, Fayet O, Prere MF, Miller WA, Gesteland RF, Atkins JF, Giddings MC (2001) RECODE: a database of frameshifting, bypassing and codon redefinition utilized for gene expression. Nucleic Acids Res 29:264–267

    Article  PubMed  CAS  Google Scholar 

  • Bravman T, Belakhov V, Solomon D, Shoham G, Henrissat B, Baasov T, Shoham Y (2003) Identification of the catalytic residues in family 52 glycoside hydrolase, a beta-xylosidase from Geobacillus stearothermophilus T-6. J Biol Chem 278:26742–26749

    Article  PubMed  CAS  Google Scholar 

  • Cobucci-Ponzano B, Trincone A, Giordano A, Rossi M, Moracci M (2003a) Identification of an archaeal alpha-l-fucosidase encoded by an interrupted gene. Production of a functional enzyme by mutations mimicking programmed −1 frameshifting. J Biol Chem 278:14622–14631

    Article  PubMed  CAS  Google Scholar 

  • Cobucci-Ponzano B, Trincone A, Giordano A, Rossi M, Moracci M (2003b) Identification of the catalytic nucleophile of the family 29 alpha-l-fucosidase from Sulfolobus solfataricus via chemical rescue of an inactive mutant. Biochemistry 42:9525–9531

    Article  PubMed  CAS  Google Scholar 

  • Cobucci-Ponzano B, Mazzone M, Rossi M, Moracci M (2005) Probing the catalytically essential residues of the alpha-l-fucosidase from the hyperthermophilic archaeon Sulfolobus solfataricus. Biochemistry 44:6331–6342

    Article  PubMed  CAS  Google Scholar 

  • Cobucci-Ponzano B, Conte F, Benelli D, Londei P, Flagiello A, Monti M, Pucci P, Rossi M, Moracci M (2006) The gene of an archaeal alpha-l-fucosidase is expressed by translational frameshifting. Nucleic Acids Res 34:4258–4268

    Article  PubMed  CAS  Google Scholar 

  • Debeche T, Bliard C, Debeire P, O’Donohue MJ (2002) Probing the catalytically essential residues of the alpha-l-arabinofuranosidase from Thermobacillus xylanilyticus. Protein Eng 1:21–28

    Article  Google Scholar 

  • de La Torre F, Sampedro J, Zarra I, Revilla G (2002) AtFXG1, an Arabidopsis gene encoding alpha-l-fucosidase active against fucosylated xyloglucan oligosaccharides. Plant Physiol 128:247–255

    Article  PubMed  Google Scholar 

  • Farabaugh PJ (1996) Programmed translational frameshifting. Microbiol Rev 60:103–134

    PubMed  CAS  Google Scholar 

  • Farkas E, Thiem J, Ajisaka K (2000) Enzymatic synthesis of fucose-containing disaccharides employing the partially purified alpha-l-fucosidase from Penicillium multicolor. Carbohydr Res 328:293–299

    Article  PubMed  CAS  Google Scholar 

  • Fischer L, Bromann R, Kengen SWM, de Vos WM, Wagner F (1996) Catalytical potency of beta-glucosidase from the extremophile Pyrococcus furiosus in glucoconjugate. Biotechnology 14:88–91

    Article  PubMed  CAS  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    PubMed  CAS  Google Scholar 

  • Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293:781–788

    PubMed  CAS  Google Scholar 

  • Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644

    Article  PubMed  CAS  Google Scholar 

  • Koshland DE (1953) Stereochemistry and the mechanism of enzymatic reactions. Biol Rev Camb Philos Soc 28:416–436

    Article  CAS  Google Scholar 

  • Li YK, Chir J, Tanaka S, Chen FY (2002) Identification of the general acid/base catalyst of a family 3 beta-glucosidase from Flvobacterium meningosepticum. Biochemistry 41:2751–2759

    Article  PubMed  CAS  Google Scholar 

  • Listinsky JJ, Siegal GP, Listinsky CM (1998) Alpha-l-fucose: a potentially critical molecule in pathologic processes including neoplasia. Am J Clin Pathol 110:425–440

    PubMed  CAS  Google Scholar 

  • Lower BH, Kennelly PJ (2002) The membrane-associated protein-serine/threonine kinase from Sulfolobus solfataricus is a glycoprotein. J Bacteriol 184:2614–2619

    Article  PubMed  CAS  Google Scholar 

  • Ly HD, Withers SG (1999) Mutagenesis of glycosidases. Annu Rev Biochem 68:487–522

    Article  PubMed  CAS  Google Scholar 

  • MacLeod AM, Tull D, Rupitz K, Warren RA, Withers SG (1996) Mechanistic consequences of mutation of active site carboxylates in a retaining beta-1,4-glycanase from Cellulomonas fimi. Biochemistry 35:13165–13172

    Article  PubMed  CAS  Google Scholar 

  • McCarter JD, Withers SG (1994) Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4:885–892

    Article  PubMed  CAS  Google Scholar 

  • McCarter JD, Withers SG (1996) Unequivocal identification of Asp-214 as the catalytic nucleophile of Saccharomyces cerevisiae alpha-glucosidase using 5-fluoro glycosyl fluorides. J Biol Chem 271:6889–6894

    Article  PubMed  CAS  Google Scholar 

  • Michalski JC, Klein A (1999) Glycoprotein lysosomal storage disorders: alpha- and beta-mannosidosis, fucosidosis and alpha-N-acetylgalactosaminidase deficiency. Biochim Biophys Acta 1455:69–84

    PubMed  CAS  Google Scholar 

  • Mori E, Hedrick JL, Wardrip NJ, Mori T, Takasaki S (1998) Occurrence of reducing terminal N-acetylglucosamine 3-sulfate and fucosylated outer chains in acidic N-glycans of porcine zona pellucida glycoproteins. Glycoconj J 15:447–456

    Article  PubMed  CAS  Google Scholar 

  • Murata T, Morimoto S, Zeng X, Watanabe S, Usui T (1999) Enzymatic synthesis of alpha-l-fucosyl-N-acetyllactosamines and 3′-O-alpha-l-fucosyllactose utilizing alpha-l-fucosidases. Carbohydr Res 320:192–199

    Article  PubMed  CAS  Google Scholar 

  • Noda K, Miyoshi E, Uozumi N, Gao CX, Suzuki K, Hayashi N, Hori M, Taniguchi N (1998) High expression of alpha-1-6 fucosyltransferase during rat hepatocarcinogenesis. Int J Cancer 75:444–450

    Article  PubMed  CAS  Google Scholar 

  • Paal K, Ito M, Withers SG (2004) Paenibacillus sp. TS12 glucosylceramidase Kinetic studies of a novel sub-family of family 3 glycosidases and identification of the catalytic residues. Biochem J 378:141–149

    Article  PubMed  CAS  Google Scholar 

  • Perugino G, Trincone A, Rossi M, Moracci M (2004) Oligosaccharide synthesis by glycosynthases. Trends Biotechnol 1:31–37

    Article  CAS  Google Scholar 

  • Rapoport E, Pendu JL (1999) Glycosylation alterations of cells in late phase apoptosis from colon carcinomas. Glycobiology 9:1337–1345

    Article  PubMed  CAS  Google Scholar 

  • Rosano C, Zuccotti S, Cobucci-Ponzano B, Mazzone M, Rossi M, Moracci M, Petoukhov MV, Svergun DI, Bolognesi M (2004) Structural characterization of the nonameric assembly of an Archaeal alpha-l-fucosidase by synchrotron small angle X-ray scattering. Biochem Biophys Res Commun 320:176–182

    Article  PubMed  CAS  Google Scholar 

  • Russell L, Waring P, Beaver JP (1998) Increased cell surface exposure of fucose residues is a late event in apoptosis. Biochem Biophys Res Commun 250:449–453

    Article  PubMed  CAS  Google Scholar 

  • Rydberg EH, Li C, Maurus R, Overall CM, Brayer GD, Withers SG (2002) Mechanistic analyses of catalysis in human pancreatic alpha-amylase: detailed kinetic and structural studies of mutants of three conserved carboxylic acids. Biochemistry 41:4492–4502

    Article  PubMed  CAS  Google Scholar 

  • Sears P, Wong CH (1996) Intervention of carbohydrate recognition by proteins and nucleic acids. Proc Natl Acad Sci USA 93:12086–12093

    Article  PubMed  CAS  Google Scholar 

  • Shallom D, Belakhov V, Solomon D, Gilead-Gropper S, Baasov T, Shoham G, Shoham Y (2002) The identification of the acid-base catalyst of alpha-arabinofuranosidase from Geobacillus stearothermophilus T-6, a family 51 glycoside hydrolase. FEBS Lett 514:163–167

    Article  PubMed  CAS  Google Scholar 

  • She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PM, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der Oost J (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840

    Article  PubMed  CAS  Google Scholar 

  • Sinnot ML (1990) Catalytic mechanism of enzymic glycosyl transfer. Chem Rev 90:1171–1202

    Article  Google Scholar 

  • Staudacher E, Altmann F, Wilson IB, Marz L (1999) Fucose in N-glycans: from plant to man. Biochim Biophys Acta 1473:216–236

    PubMed  CAS  Google Scholar 

  • Sulzenbacher G, Bignon C, Nishimura T, Tarling CA, Withers SG, Henrissat B, Bourne Y (2004) Crystal structure of Thermotoga maritima α-l-fucosidase. Insights into the catalytic mechanism and the molecular basis for fucosidosis. J Biol Chem 279:13119–13128

    Article  PubMed  CAS  Google Scholar 

  • Tarling CA, He S, Sulzenbacher G, Bignon C, Bourne Y, Henrissat B, Withers SG (2003) Identification of the catalytic nucleophile of the family 29 α-l-fucosidase from Thermotoga maritima through trapping of a covalent glycosylenzyme intermediate and mutagenesis. J Biol Chem 278:47394–47399

    Article  PubMed  CAS  Google Scholar 

  • Tull D, Burgoyne DL, Chow DT, Withers SG, Aebersold R (1996) A mass spectrometry-based approach for probing enzyme active sites: Identification of Glu 127 in Cellulomonas fimi exoglycanase as the residue modified by N-bromoacetyl cellobiosylamine. Anal Biochem 234:119–125

    Article  PubMed  CAS  Google Scholar 

  • Vallmitjana M, Ferrer-Navarro M, Planell R, Abel M, Ausin C, Querol E, Planas A, Perez-Pons JA (2001) Mechanism of the family 1 beta-glucosidase from Streptomyces sp: catalytic residues and kinetic studies. Biochemistry 40:5975–5982

    Article  PubMed  CAS  Google Scholar 

  • Vanhooren PT, Vandamme EJ (1999) l-fucose: occurrence, physiological role, chemical, enzymatic and microbial synthesis. J Chem Technol Biotechnol 74:479–497

    Article  CAS  Google Scholar 

  • Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 2:97–130

    Article  Google Scholar 

  • Viladot JL, de Ramon E, Durany O, Planas A (1998) Probing the mechanism of Bacillus 1,3-1,4-beta-d-glucan 4-glucanohydrolases by chemical rescue of inactive mutants at catalytically essential residues. Biochemistry 37:11332–11342

    Article  PubMed  CAS  Google Scholar 

  • Vocadlo DJ, Mayer C, He S, Withers SG (2000) Mechanism of action and identification of Asp242 as the catalytic nucleophile of Vibrio furnisii N-acetyl-beta-d-glucosaminidase using 2-acetamido-2-deoxy-5-fluoro-alpha-l-idopyranosyl fluoride. Biochemistry 1:117–126

    Article  CAS  Google Scholar 

  • Vocadlo DJ, Davies GJ, Laine R, Withers SG (2001) Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature 412:835–838

    Article  PubMed  CAS  Google Scholar 

  • Vocadlo DJ, Wicki J, Rupitz K, Withers SG (2002) A case for reverse protonation: identification of Glu160 as an acid/base catalyst in Thermoanaerobacterium saccharolyticum beta-xylosidase and detailed kinetic analysis of a site-directed mutant. Biochemistry 41:9736–9746

    Article  PubMed  CAS  Google Scholar 

  • Wiese TJ, Dunlap JA, Yorek MA (1997) Effect of l-fucose and d-glucose concentration on l-fucoprotein metabolism in human Hep G2 cells and changes in fucosyltransferase and alpha-l-fucosidase activity in liver of diabetic rats. Biochim Biophys Acta 1335:61–72

    PubMed  CAS  Google Scholar 

  • Xiang J, Bernstein IA (1992) Differentiative changes in fucosyltransferase activity in newborn rat epidermal cells. Biochem Biophys Res Commun 189:27–32

    Article  PubMed  CAS  Google Scholar 

  • Zechel DL, Withers SG (2000) Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc Chem Res 33:11–18

    Article  PubMed  CAS  Google Scholar 

  • Zechel DL, Reid SP, Stoll D, Nashiru O, Warren RA, Withers SG (2003) Mechanism, mutagenesis, and chemical rescue of a beta-mannosidase from Cellulomonas fimi. Biochemistry 42:7195–7204

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by MIUR project “Folding di proteine: l’altra metà del codice genetico” RBAU015B47_006. The IBP-CNR belongs to the Centro Regionale di Competenza in Applicazioni Tecnologico-Industriali di Biomolecole e Biosistemi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice Cobucci-Ponzano.

Additional information

Communicated by D.A. Cowan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cobucci-Ponzano, B., Conte, F., Rossi, M. et al. The α-l-fucosidase from Sulfolobus solfataricus . Extremophiles 12, 61–68 (2008). https://doi.org/10.1007/s00792-007-0105-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-007-0105-y

Keywords

Navigation