Skip to main content

Stress responses and metal tolerance of Chlamydomonas acidophila in metal-enriched lake water and artificial medium

Abstract

Chlamydomonas acidophila faces high heavy-metal concentrations in acidic mining lakes, where it is a dominant phytoplankton species. To investigate the importance of metals to C. acidophila in these lakes, we examined the response of growth, photosynthesis, cell structure, heat-shock protein (Hsp) accumulation, and metal adsorption after incubation in metal-rich lake water and artificial growth medium enriched with metals (Fe, Zn). Incubation in both metal-rich lake water and medium caused large decreases in photosystem II function (though no differences among lakes), but no decrease in growth rate (except for medium + Fe). Concentrations of small Hsps were higher in algae incubated in metal-rich lake-water than in metal-enriched medium, whereas Hsp60 and Hsp70A were either less or equally expressed. Cellular Zn and Fe contents were lower, and metals adsorbed to the cell surface were higher, in lake-water-incubated algae than in medium-grown cells. The results indicate that high Zn or Fe levels are likely not the main or only contributor to the low primary production in mining lakes, and multiple adaptations of C. acidophila (e.g., high Hsp levels, decreased metal accumulation) increase its tolerance to metals and permit survival under such adverse environmental conditions. Supposedly, the main stress factor present in the lake water is an interaction between low P and high Fe concentrations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Barua D, Heckathorn SA (2006) The interactive effects of light and temperature on heat-shock protein accumulation in Solidago altissima (Asteraceae) in the field and laboratory. Am J Bot 93:102–109

    CAS  Google Scholar 

  2. Bates SS, Tessier A, Campbell PGC, Buffle J (1982) Zinc adsorption and transport by Chlamydomonas variabilis and Scenedesmus subspicatus (Chlorophyceae) grown in semicontinuous culture. J Phycol 18:521–529

    Article  CAS  Google Scholar 

  3. Bissinger V, Jander J, Tittel J (2000) A new medium free of organic carbon to cultivate organisms from extremely acidic mining lakes (pH 2.7). Acta Hydrochim Hydrobiol 28:310–312

    Article  CAS  Google Scholar 

  4. Borbely G, Suranyi G, Kos P (1990) Stress responses of cyanobacteria and the pleiotropic effects of light deprivation. FEMS Microbiol Ecol 74:141–152

    Article  CAS  Google Scholar 

  5. Bringezu K, Lichtenberger O, Leopold I, Neumann D (1999) Heavy metal tolerance of Silene vulgaris. J Plant Physiol 154:536–546

    CAS  Google Scholar 

  6. Doi H, Kikuchi E, Shikano S (2001) Carbon and nitrogen stable isotope ratios analysis of food sources for Chironomus acerbiphilus larvae (Diptera Chironomidae) in strongly acidic lake Katanuma. Radioisotopes 50:601–611

    Google Scholar 

  7. Downs CA, Ryan SL, Heckathorn SA (1999) The chloroplast small heat-shock protein: evidence for a general role in protecting photosystem II against oxidative stress and photoinhibition. J Plant Physiol 155:488–496

    CAS  Google Scholar 

  8. Drzymalla C, Schroda M, Beck CF (1996) Light-inducible gene HSP70B encodes a chloroplast-localized heat shock protein in Chlamydomonas reinhardtii. Plant Mol Biol 31:1185–1194

    PubMed  Article  CAS  Google Scholar 

  9. Endo T, Asada K (1996) Dark induction of the non-photochemical quenching of chlorophyll fluorescence by acetate in Chlamydomonas reinhardtii. Plant Cell Physiol 37:551–555

    CAS  Google Scholar 

  10. Friese K, Hupfer M, Schultze M (1998) Chemical characteristics of water and sediment in acid mining lakes of the Lusatian lignite district. In: Geller W, Klapper H, Salomons W (eds) Acidic mining lakes: acid mine drainage, limnology and reclamation. Springer, Berlin, pp 25–45

    Google Scholar 

  11. Gaur JP, Rai LC (2001) Heavy metal tolerance in algae. In: Rai LC, Gaur JP (eds) Algal adaptation to environmental stresses-physiological, biochemical and molecular mechanisms. Springer, Varanasi, India, pp 363–388

    Google Scholar 

  12. Gerloff-Elias A, Spijkerman E, Pröschold T (2005a) Effect of external pH on the growth, photosynthesis and photosynthetic electron transport of Chlamydomonas acidophila Negoro, isolated from an extremely acidic lake (pH 2.6). Plant Cell Environ 28:1218–1229

    Article  CAS  Google Scholar 

  13. Gerloff-Elias A, Spijkerman E, Schubert H (2005b) Light acclimation of Chlamydomonas acidophila accumulating in the hypolimnion of an acidic lake (pH 2.6). Freshw Biol 50:1301–1314

    Article  Google Scholar 

  14. Gerloff-Elias A, Barua D, Mölich A, Spijkerman E (2006) Temperature- and pH-dependent accumulation of heat-shock proteins in the acidophilic green alga Chlamydomonas acidophila. FEMS Microbiol Ecol 56:345–354

    PubMed  Article  CAS  Google Scholar 

  15. Gilmore AM, Yamamoto HY (1991) Resolution of lutein and zeaxanthin using a non-endcapped, lightly carbon-loaded C18 high-performance liquid chromatographic column. J Chromatogr 543:137–145

    Article  CAS  Google Scholar 

  16. Gimmler H (2001) Acidophilic and acidotolerant algae. In: Rai LC, Gaur JP (eds) Algal adaptation to environmental stresses. Physioloigcal, biochemical and molecular mechanisms. Springer, Varanasi, India, pp 259–290

    Google Scholar 

  17. Graham JM, Arancibia-Avila P, Graham LE (1996) Effects of pH and selected metals on growth of the filamentous green alga Mougeotia under acidic conditions. Limnol Oceanogr 41:263–270

    CAS  Article  Google Scholar 

  18. Gyure RA, Konopka A, Brooks A, Doemel W (1987) Algal and bacterial activities in acidic (pH3) strip mine lakes. Appl Environ Microb 53:2069–2076

    CAS  Google Scholar 

  19. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    PubMed  Article  CAS  Google Scholar 

  20. Hallberg EM, Shu YM, Hallberg RL (1993) Loss of mitochondrial Hsp60 function: non-equivalent effects on matrix-targeted and intermembrane-targeted proteins. Mol Cell Biol 13:3050–3057

    PubMed  CAS  Google Scholar 

  21. Hamilton EW, Heckathorn SA (2001) Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol 126:1266–1274

    PubMed  Article  CAS  Google Scholar 

  22. Harrison GI, Campbell PGC, Tessier A (1986) Effects of pH changes on zinc uptake by Chlamydomonas variabilis grown in batch culture. Can J Fish Aquat Sci 43:687–693

    CAS  Google Scholar 

  23. Heckathorn SA, Ryan SL, Baylis JA, Wang DF, Hamilton EW, Cundiff L, Luthe DS (2002) In vivo evidence from an Agrostis stolonifera selection genotype that chloroplast small heat-shock proteins can protect photosystem II during heat stress. Funct Plant Biol 29:933–944

    Article  CAS  Google Scholar 

  24. Heckathorn SA, Mueller JK, LaGuidice S, Zhu B, Barrett T, Blair B, Dong Y (2004) Chloroplast small heat-shock proteins protect photosynthesis during heavy metal stress. Am J Bot 91:1312–1318

    CAS  Google Scholar 

  25. Heyde M, Portalier R (1990) Acid shock proteins of Escherichia coli. FEMS Microbiol Lett 69:19–26

    Article  CAS  Google Scholar 

  26. Ikegami I, Nemoto A, Sakashita K (2005) The formation of Zn-Chl a in Chlorella heterotrophically grown in the dark with an excessive amount of Zn2+. Plant Cell Physiol 46:729–735

    PubMed  Article  CAS  Google Scholar 

  27. Ivorra N, Kraak MHS, Admiraal W (1995) Use of lake water in testing copper toxicity to desmid species. Water Res 29:2113–2117

    Article  CAS  Google Scholar 

  28. Ivorra N, Barranguet C, Jonker M, Kraak MHS, Admiraal W (2002) Metal-induced tolerance in the freshwater microbenthic diatom Gomphonema parvulum. Environ Pollut 116:147–157

    PubMed  Article  CAS  Google Scholar 

  29. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    CAS  Google Scholar 

  30. Kromkamp JC, Domin A, Dubinsky Z, Lehmann C, Schanz F (2001) Changes in photosynthetic properties measured by oxygen evolution and variable chlorophyll fluorescence in a simulated entrainment experiment with the cyanobacterium Planktothrix rubescens. Aquat Sci 63:363–382

    Article  Google Scholar 

  31. Krupa Z, Baszynski T (1995) Some aspects of heavy metals toxicity towards photosynthetic apparatus- direct and indirect effects on light and dark reactions. Acta Physiol Plant 17:177–190

    CAS  Google Scholar 

  32. Laksanalamai P, Robb FT (2004) Small heat shock proteins from extremophiles: a review. Extremophiles 8:1–11

    PubMed  Article  CAS  Google Scholar 

  33. Lessmann D, Deneke R, Ender R, Hemm M, Kapfer M, Krumbeck H, Wollmann K, Nixdorf B (1999) Lake Plessa 107 (Lusatia, Germany)—an extremely acidic shallow mining lake. Hydrobiologia 408:293–299

    Article  Google Scholar 

  34. Lessmann D, Fyson A, Nixdorf B (2000) Phytoplankton of the extremely acidic mining lakes of Lusatia (Germany) with pH < 3. Hydrobiologia 433:123–128

    Article  Google Scholar 

  35. Lewis S, Donkin ME, Depledge MH (2001) Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aquat Toxicol 51:277–291

    PubMed  Article  CAS  Google Scholar 

  36. Lin CY, Chen YM, Key JL (1985) Solute leakage in soybean seedlings under various heat shock regimes. Plant Cell Physiol 26:1493–1498

    CAS  Google Scholar 

  37. Ma M, Zhu W, Wang Z, Witkamp GJ (2003) Accumulation, assimilation and growth inhibition of copper on freshwater alga (Scenedesmus subspicatus 86.81 SAG) in the presence of EDTA and fulvic acid. Aquat Toxicol 63:221–228

    PubMed  Article  CAS  Google Scholar 

  38. Mann H, Fyfe WS (1989) Metal uptake and Fe-oxide, Ti-oxide biomineralization by acidophilic microorganisms in mine-waste environments, Elliot Lake, Canada. Can J Earth Sci 26:2731–2735

    CAS  Article  Google Scholar 

  39. Mann H, Tazaki K, Fyfe WS, Beveridge TJ, Humphrey R (1987) Cellular lepidocrocite precipitation and heavy-metal sorption in Euglena sp. (unicellular alga): Implications for biomineralization. Chem Geol 63:39–43

    Article  CAS  Google Scholar 

  40. Nalewajko C, Colman B, Olaveson M (1997) Effects of pH on growth, photosynthesis, respiration, and copper tolerance of three Scenedesmus strains. Environ Exp Bot 37:153–160

    Article  CAS  Google Scholar 

  41. Neumann D, Lichtenberger O, Gunther D, Tschiersch K, Nover L (1994) Heat-shock proteins induce heavy-metal tolerance in higher plants. Planta 194:360–367

    Article  CAS  Google Scholar 

  42. Nichols HW (1973) Growth media-freshwater. In: Stein JR (ed) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, Cambridge, pp 7–24

    Google Scholar 

  43. Nishikawa K, Tominaga N (2001) Isolation, growth, ultrastructure, and metal tolerance of the green alga, Chlamydomonas acidophila (Chlorophyta). Biosci Biotechnol Biochem 65:2650–2656

    PubMed  Article  CAS  Google Scholar 

  44. Nishikawa K, Yamakoshi Y, Uemura I, Tominaga N (2003) Ultrastructural changes in Chlamydomonas acidophila (Chlorophyta) induced by heavy metals and polyphosphate metabolism. FEMS Microbiol Ecol 44:253–259

    Article  CAS  PubMed  Google Scholar 

  45. Nixdorf B, Mischke U, Lessmann D (1998) Chrysophytes and chlamydomonads: pioneer colonists in extremely acidic mining lakes (pH < 3) in Lusatia (Germany). Hydrobiologia 370:315–327

    Article  Google Scholar 

  46. Nixdorf B, Krumbeck H, Jander J, Beulker C (2003) Comparison of bacterial and phytoplankton productivity in extremely acidic mining lakes and eutrophic hard water lakes. Acta Oecol 24:281–288

    Article  Google Scholar 

  47. Olaveson MM, Stokes PM (1989) Responses of the acidophilic alga Euglena mutabilis (Euglenophyceae) to carbon enrichment at pH 3. J Phycol 25:529–539

    Article  Google Scholar 

  48. Packroff G (2000) Protozooplankton in acidic mining lakes with special respect to ciliates. Hydrobiologia 433:157–166

    Article  Google Scholar 

  49. Panaretou B, Piper PW (1992) The plasma membrane of yeast acquires a novel heat shock protein (hsp30) and displays a decline in proton pumping ATPase levels in response to both heat-shock and the entry to stationary phase. Eur J Biochem 206:635–640

    PubMed  Article  CAS  Google Scholar 

  50. Parkhill JP, Maillet G, Cullen JJ (2001) Fluorescence-based maximal quantum yield for PSII as a diagnostic of nutrient stress. J Phycol 37:517–529

    Article  Google Scholar 

  51. Poerschmann J, Spijkerman E, Langer U (2004) Fatty acid patterns in Chlamydomonas sp as a marker for nutritional regimes and temperature under extremely acidic conditions. Microb Ecol 48:78–89

    PubMed  Article  CAS  Google Scholar 

  52. Poskuta JW, Parys E, Romanowska E (1996) Toxicity of lead to photosynthesis, accumulation of chlorophyll, respiration and growth of Chlorella pyrenoidosa. Protective role of dark respiration. Acta Physiol Plant 18:165–171

    CAS  Google Scholar 

  53. Pyza E, Mak P, Kramarz P, Laskowski R (1997) Heat shock proteins (HSP70) as biomarkers in ecotoxicological studies. Ecotoxicol Environ Saf 38:244–251

    PubMed  Article  CAS  Google Scholar 

  54. Ralph PJ, Burchett MD (1998) Photosynthetic response of Halophila ovalis to heavy metal stress. Environ Pollut 103:91–101

    Article  CAS  Google Scholar 

  55. Schroda M, Vallon O, Wollman FA, Beck CF (1999) A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. Plant Cell 11:1165–1178

    PubMed  Article  CAS  Google Scholar 

  56. Schroda M, Vallon O, Whitelegge JP, Beck CF, Wollman FA (2001) The chloroplastic GrpE homolog of Chlamydomonas: two isoforms generated by differential splicing. The Plant Cell 13:2823–2839

    PubMed  Article  CAS  Google Scholar 

  57. Schuster G, Even D, Kloppstech K, Ohad I (1988) Evidence for protection by heat-shock proteins against photoinhibition during heat-shock. EMBO J 7:1–6

    PubMed  CAS  Google Scholar 

  58. Shaked Y, Kustka AB, Morel FMM (2005) A general kinetic model for iron acquisition by eukaryotic phytoplankton. Limnol Oceanogr 50:872–882

    CAS  Article  Google Scholar 

  59. Simmons JA, Long JM, Ray JW (2004) What limits the productivity of acid mine drainage treatment ponds? Mine Water Environ 23:44–53

    Article  CAS  Google Scholar 

  60. Singh DP, Singh SP (1987) Action of heavy metals on Hill activity and O2 evolution in Anacystis nidulans. Plant Physiol 83:12–14

    PubMed  CAS  Google Scholar 

  61. Sørensen JG, Kristensen TN, Loeschcke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Lett 6:1025–1037

    Article  Google Scholar 

  62. Spijkerman E, Garcia-Mendoza E, Matthijs HCP, van Hunnik E, Coesel PFM (2004) Negative effects of P-buffering and pH on photosynthetic activity of planktonic desmid species. Photosynthetica 42:49–57

    Article  CAS  Google Scholar 

  63. Tanaka Y, Nishiyama Y, Murata N (2000) Acclimation of the photosynthetic machinery to high temperature in Chlamydomonas reinhardtii requires synthesis de novo of proteins encoded by the nuclear and chloroplast genomes. Plant Physiol 124:441–449

    PubMed  Article  CAS  Google Scholar 

  64. Varotto C, Maiwald D, Pesaresi P, Jahns P, Salamini F, Leister D (2002) The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. Plant J 31:589–599

    PubMed  Article  CAS  Google Scholar 

  65. Vigneault B, Campbell PGC (2005) Uptake of cadmium by freshwater green algae: effects of pH and aquatic humic substances. J Phycol 41:55–61

    Article  CAS  Google Scholar 

  66. Vigneault B, Percot A, Lafleur M, Campbell PGC (2000) Permeability changes in model and phytoplankton membranes in the presence of aquatic humic substances. Environ Sci Technol 34:3907–3913

    Article  CAS  Google Scholar 

  67. de Vos CHR, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–858

    PubMed  Google Scholar 

  68. Whitton BA (1970) Toxicity of heavy metals to freshwater algae: a review. Phykos 9:116–125

    CAS  Google Scholar 

  69. Woelfl S, Whitton BA (2000) Sampling, preservation and quantification of biological samples from highly acidic environments (pH <= 3). Hydrobiologia 433:173–180

    Article  Google Scholar 

  70. Woelfl S, Tittel J, Zippel B, Kringel R (2000) Occurrence of an algal mass development in an acidic (pH 2.5), iron and aluminium-rich coal mining pond. Acta Hydrochim Hydrobiol 28:305–309

    Article  CAS  Google Scholar 

  71. Wollgiehn R, Neumann D (1999) Metal stress response and tolerance of cultured cells from Silene vulgaris and Lycopersicon peruvianum: Role of heat stress proteins. J Plant Physiol 154:547–553

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Klaus Hausmann for the TEM work that supports our results. This work has been supported by the German research foundation (DFG) to AG-E and ES, a European Union Marie Curie Development Host Fellowship received by ES, a scholarship from the FAZIT-foundation (Frankfurt/Main, Germany) received by AG-E and the German Academic Exchange Service (DAAD) as part of the International Quality Network (IQN) to DB and SH.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elly Spijkerman.

Additional information

Communicated by K. Horikoshi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Spijkerman, E., Barua, D., Gerloff-Elias, A. et al. Stress responses and metal tolerance of Chlamydomonas acidophila in metal-enriched lake water and artificial medium. Extremophiles 11, 551–562 (2007). https://doi.org/10.1007/s00792-007-0067-0

Download citation

Keywords

  • Chlamydomonas acidophila
  • Heat-shock protein accumulation
  • Lake water incubation
  • Metal accumulation
  • Metal stress
  • Photosynthetic yield