Abstract
Objectives
Bacterial osteomyelitis of the jaw is a severe disease potentially requiring extensive surgical treatment. We have evaluated the incidence rates of bacterial osteomyelitis following dental abscessation associated with primary or secondary tooth extraction.
Materials and methods
A retrospective cohort study was designed and included patients with dental abscesses and surgical treatment including the extraction of focus teeth. Patients were either treated with primary removal during acute infection or secondary delayed extraction within an infection-free interval. The primary outcome variable was the occurrence of bacterial osteomyelitis following the abscess. Secondary outcomes were the influence of general disease, antibiotic therapy, and surgical technique.
Results
One hundred nine patients were enrolled in the study; 4 patients (3.7%) developed osteomyelitis. Primary tooth extraction was performed on all these patients (p = 0.017). Significant associations of diabetes (p = 0.001), the use of clindamycin (p = 0.025), and transcutaneous incision (p = 0.017) with the incidence of osteomyelitis were detected.
Conclusions
More severe infections may be associated with a higher risk for the development of osteomyelitis following dental abscesses. A history of diabetes and clindamycin therapy might form further predisposing risk factors. Because of the low incidence and the small case number, our data need to be interpreted carefully.
Clinical relevance
Osteomyelitis of the jaw is a rare but severe disease that may require extensive therapy and that impairs the quality of life of affected patients. The evaluation of risk factors to enable further reduction of incidence is therefore urgently required.
This is a preview of subscription content, access via your institution.
References
- 1.
Prasad KC, Prasad SC, Mouli N, Agarwal S (2007) Osteomyelitis in the head and neck. Acta Otolaryngol 127:194–205. https://doi.org/10.1080/00016480600818054
- 2.
Baur DA, Altay MA, Flores-Hidalgo A, Ort Y, Quereshy FA (2015) Chronic osteomyelitis of the mandible: diagnosis and management--an institution’s experience over 7 years. J Oral Maxillofac Surg 73:655–665. https://doi.org/10.1016/j.joms.2014.10.017
- 3.
Adekeye EO, Cornah J (1985) Osteomyelitis of the jaws: a review of 141 cases. Br J Oral Maxillofac Surg 23:24–35. https://doi.org/10.1016/0266-4356(85)90075-0
- 4.
Mercuri LG (1991) Acute osteomyelitis of the jaws. Oral Maxillofac Surg Clin N Am 3:355–365
- 5.
Marx RE (1991) Chronic osteomyelitis of the jaws. Oral Maxillofac Surg Clin N Am 3:367–381
- 6.
Hudson JW (1993) Osteomyelitis of the jaws: a 50-year perspective. J Oral Maxillofac Surg 51:1294–1301. https://doi.org/10.1016/s0278-2391(10)80131-4
- 7.
Koorbusch GF, Fotos P, Goll KT (1992) Retrospective assessment of osteomyelitis. Etiology, demographics, risk factors, and management in 35 cases. Oral Surg Oral Med Oral Pathol 74:149–154. https://doi.org/10.1016/0030-4220(92)90373-x
- 8.
Zaki SA, Taqi SA, Nilofer AR, Sami LB, Sami SA (2012) Recurrent chronic suppurative osteomyelitis of the mandible and human immunodeficiency virus infection. Indian J Dent Res 23:431. https://doi.org/10.4103/0970-9290.102249
- 9.
Baltensperger MM (2003) A retrospective analysis of 290 osteomyelitis cases treated in the past 30 years at the Department of Cranio-Maxillofacial Surgery Zurich with special recognition of the classification
- 10.
Dym H, Zeidan J (2017) Microbiology of acute and chronic osteomyelitis and antibiotic treatment. Dent Clin N Am 61:271–282. https://doi.org/10.1016/j.cden.2016.12.001
- 11.
Calhoun KH, Shapiro RD, Stiernberg CM, Calhoun JH, Mader JT (1988) Osteomyelitis of the mandible. Arch Otolaryngol--Head Neck Surg 114:1157–1162. https://doi.org/10.1001/archotol.1988.01860220091031
- 12.
Kim SG, Jang HS (2001) Treatment of chronic osteomyelitis in Korea. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 92:394–398. https://doi.org/10.1067/moe.2001.117810
- 13.
Pigrau C, Almirante B, Rodriguez D, Larrosa N, Bescos S, Raspall G, Pahissa A (2009) Osteomyelitis of the jaw: resistance to clindamycin in patients with prior antibiotics exposure. Eur J Clin Microbiol Infect Dis 28:317–323. https://doi.org/10.1007/s10096-008-0626-z
- 14.
Haeffs TH, Scott CA, Campbell TH, Chen Y, August M (2018) Acute and chronic suppurative osteomyelitis of the jaws: a 10-year review and assessment of treatment outcome. J Oral Maxillofac Surg 76:2551–2558. https://doi.org/10.1016/j.joms.2018.05.040
- 15.
Kesting MR, Thurmuller P, Ebsen M, Wolff KD (2008) Severe osteomyelitis following immediate placement of a dental implant. Int J Oral Maxillofac Implants 23:137–142
- 16.
Van Merkesteyn JP, Bakker DJ, Van der Waal I, Kusen GJ, Egyedi P, Van den Akker HP, De Man K, Panders AK, Lekkas KE (1984) Hyperbaric oxygen treatment of chronic osteomyelitis of the jaws. Int J Oral Surg 13:386–395. https://doi.org/10.1016/s0300-9785(84)80063-0
- 17.
Jorgensen NP, Hansen K, Andreasen CM, Pedersen M, Fuursted K, Meyer RL and Petersen E (2017) Hyperbaric oxygen therapy is ineffective as an adjuvant to daptomycin with rifampicin treatment in a murine model of Staphylococcus aureus in implant-associated osteomyelitis. Microorganisms 5. https://doi.org/10.3390/microorganisms5020021
- 18.
Chen CE, Shih ST, Fu TH, Wang JW, Wang CJ (2003) Hyperbaric oxygen therapy in the treatment of chronic refractory osteomyelitis: a preliminary report. Chang Gung Med J 26:114–121
- 19.
Jamil MU, Eckardt A, Franko W (2000) Hyperbaric oxygen therapy. Clinical use in treatment of osteomyelitis, osteoradionecrosis and reconstructive surgery of the irradiated mandible. Mund Kiefer Gesichtschir 4:320–323. https://doi.org/10.1007/s100060000224
- 20.
Martis CS, Karakasis DT (1975) Extractions in the presence of acute infections. J Dent Res 54:59–61. https://doi.org/10.1177/00220345750540013701
- 21.
Krogh HW (1951) Extraction of teeth in the presence of acute infections. J Oral Surg (Chic) 9:136–151
- 22.
Steffens R, Martini M, Rodemer H, Berge SJ (2005) Tooth extraction in cases of dental abscess. Mund Kiefer Gesichtschir 9:177–179. https://doi.org/10.1007/s10006-005-0610-z
- 23.
Gupta M, Singh V (2010) A retrospective study of 256 patients with space infection. J Maxillofac Oral Surg 9:35–37. https://doi.org/10.1007/s12663-010-0011-1
- 24.
Andre CV, Khonsari RH, Ernenwein D, Goudot P, Ruhin B (2017) Osteomyelitis of the jaws: a retrospective series of 40 patients. J Stomatol Oral Maxillofac Surg 118:261–264. https://doi.org/10.1016/j.jormas.2017.04.007
- 25.
Peravali RK, Jayade B, Joshi A, Shirganvi M, Bhasker Rao C, Gopalkrishnan K (2012) Osteomyelitis of maxilla in poorly controlled diabetics in a rural Indian population. J Maxillofac Oral Surg 11:57–66. https://doi.org/10.1007/s12663-011-0283-0
- 26.
Daramola JO, Ajagbe HA (1982) Chronic osteomyelitis of the mandible in adults: a clinical study of 34 cases. Br J Oral Surg 20:58–62. https://doi.org/10.1016/0007-117x(82)90008-7
- 27.
Bottger S, Lautenbacher K, Domann E, Howaldt HP, Attia S, Streckbein P, Wilbrand JF (2020) Indication for an additional postoperative antibiotic treatment after surgical incision of serious odontogenic abscesses. J Craniomaxillofac Surg 48:229–234. https://doi.org/10.1016/j.jcms.2020.01.009
- 28.
Poeschl PW, Spusta L, Russmueller G, Seemann R, Hirschl A, Poeschl E, Klug C, Ewers R (2010) Antibiotic susceptibility and resistance of the odontogenic microbiological spectrum and its clinical impact on severe deep space head and neck infections. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 110:151–156. https://doi.org/10.1016/j.tripleo.2009.12.039
- 29.
Sobottka I, Cachovan G, Sturenburg E, Ahlers MO, Laufs R, Platzer U, Mack D (2002) In vitro activity of moxifloxacin against bacteria isolated from odontogenic abscesses. Antimicrob Agents Chemother 46:4019–4021. https://doi.org/10.1128/aac.46.12.4019-4021.2002
- 30.
Kim MK, Chuang SK, August M (2017) Antibiotic resistance in severe orofacial infections. J Oral Maxillofac Surg 75:962–968. https://doi.org/10.1016/j.joms.2016.10.039
- 31.
Irie S, Anno T, Kawasaki F, Shigemoto R, Kaneto H, Kaku K, Okimoto N (2019) Acute exacerbation of chronic osteomyelitis triggered by aggravation of type 2 diabetes mellitus: a case report. J Med Case Rep 13:7. https://doi.org/10.1186/s13256-018-1954-y
- 32.
Cunha BA (2002) Osteomyelitis in elderly patients. Clin Infect Dis 35:287–293. https://doi.org/10.1086/341417
- 33.
Lew DP, Waldvogel FA (2004) Osteomyelitis. Lancet (London, England) 364:369–379. https://doi.org/10.1016/S0140-6736(04)16727-5
- 34.
Lew DP, Waldvogel FA (1997) Osteomyelitis. N Engl J Med 336:999–1007. https://doi.org/10.1056/NEJM199704033361406
- 35.
Benfield T, Jensen JS, Nordestgaard BG (2007) Influence of diabetes and hyperglycaemia on infectious disease hospitalisation and outcome. Diabetologia 50:549–554. https://doi.org/10.1007/s00125-006-0570-3
- 36.
Shah BR, Hux JE (2003) Quantifying the risk of infectious diseases for people with diabetes. Diabetes Care 26:510–513. https://doi.org/10.2337/diacare.26.2.510
Acknowledgments
The presented data are part of the doctoral thesis of Caroline Braß. This study was supported by the medical faculty of the University of Heidelberg.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Moratin, J., Freudlsperger, C., Metzger, K. et al. Development of osteomyelitis following dental abscesses—influence of therapy and comorbidities. Clin Oral Invest 25, 1395–1401 (2021). https://doi.org/10.1007/s00784-020-03447-6
Received:
Accepted:
Published:
Issue Date:
Keywords
- Osteomyelitis
- Risk factors
- Tooth extractions
- Abscess
- Dental infection