Temporary materials: comparison of in vivo and in vitro performance



The aim of this investigation was to compare clinical performance and in vitro wear of temporary CAD/CAM and cartridge crowns. This study is an approach to estimate the influence of in vivo use and laboratory simulation on temporary crowns.

Materials and methods

A total of 90 crowns were fabricated from each temporary CAD/CAM or cartridge material. Also, 10 crowns of each material were clinically applied for 14 days, and 80 identical duplicate restorations were investigated in the laboratory after storage in water (14 days; 37 °C) and subsequent thermal cycling and mechanical loading (TCML, 240.000 × 50N ML, 600 × 5°C/55 °C). After in vivo application or in vitro aging, facture force, superficial wear (mean and maximum), surface roughness (Ra, Rz), thermal weight loss (TGA), and heat of reaction (DSC) were determined for all crowns. Statistics: Bonferroni post hoc test; one-way analysis of variance (ANOVA); α = 0.05).


The fracture resistance of the temporary materials varied between 1196.4 (CAD in vivo) and 1598.3 N (cartridge crown in vitro). Mean (maximum) wear data between 204.7 (386.7 μm; cartridge in vitro) and 353.0 μm (621.8 μm; CAD in vitro) were found. Ra values ranged between 4.4 and 4.9 μm and Rz values between 36.0 and 40.8 μm. DSC and TG analysis revealed small differences between the materials but a strong influence of the aging process.


Comparison of in vivo and in vitro aging led to no significant differences in fracture force and wear but differences in roughness, DSC, and TGA. SEM evaluation confirmed comparability. Comparison of CAD/CAM and cartridge temporary materials partially showed significant differences.

Clinical relevance

In vitro aging methods might be helpful to estimate materials’ properties before principal clinical application. CAD/CAM and cartridge temporary materials provided comparable good clinical performance.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Burns DR, Beck DA, Nelson SK (2003) A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: report of the committee on research in fixed prosthodontics of the academy of fixed prosthodontics. J Prosthet Dent 90(5):474–497. https://doi.org/10.1016/S0022391303002592

    Article  PubMed  Google Scholar 

  2. 2.

    Perry RD, Magnuson B (2012) Provisional materials: key components of interim fixed restorations. Compend Contin Educ Dent 33(1):59

    PubMed  Google Scholar 

  3. 3.

    Patras M, Naka O, Doukoudakis S et al (2012) Management of provisional restorations’ deficiencies: a literature review. J Esthet Restor Dent 24(1):26–38. https://doi.org/10.1111/j.1708-8240.2011.00467.x

    Article  PubMed  Google Scholar 

  4. 4.

    Kerby RE, Knobloch LA, Sharples S, Peregrina A (2013) Mechanical properties of urethane and bis-acryl interim resin materials. J Prosthet Dent 110(1):21–28. https://doi.org/10.1016/S0022-3913(13)60334-0

    Article  PubMed  Google Scholar 

  5. 5.

    Hahnel S, Krifka S, Behr M, Kolbeck C, Lang R, Rosentritt M (2019) Performance of resin materials for temporary fixed denture prostheses. J Oral Sci 61:270–275. https://doi.org/10.2334/josnusd.18-0150

    Article  PubMed  Google Scholar 

  6. 6.

    Luthardt RG, Stossel M, Hinz M et al (2000) Clinical performance and periodontal outcome of temporary crowns and fixed partial dentures: a randomized clinical trial. J Prosthet Dent 83(1):32–39

    Article  Google Scholar 

  7. 7.

    Abdullah AO, Tsitrou EA, Pollington S (2016) Comparative in vitro evaluation of CAD/CAM vs conventional provisional crowns. J Appl Oral Sci 24(3):258–263. https://doi.org/10.1590/1678-775720150451

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Abdullah AO, Pollington S, Liu Y (2018) Comparison between direct chairside and digitally fabricated temporary crowns. Dent Mater J 37(6):957–963. https://doi.org/10.4012/dmj.2017-315

    Article  PubMed  Google Scholar 

  9. 9.

    Karaokutan I, Sayin G, Kara O (2015) In vitro study of fracture strength of provisional crown materials. J Adv Prosthodont 7(1):27–31. https://doi.org/10.4047/jap.2015.7.1.27

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Abdulmohsen B, Parker S, Braden M, Patel MP (2016) A study to investigate and compare the physicomechanical properties of experimental and commercial temporary crown and bridge materials. Dent Mater 32(2):200–210. https://doi.org/10.1016/j.dental.2015.11.025

    Article  PubMed  Google Scholar 

  11. 11.

    Pott P-C, Schmitz-Wätjen H, Stiesch M, Eisenburger M (2017) Influence of the material for preformed moulds on the polymerization temperature of resin materials for temporary FPDs. J Adv Prosthodont 9(4):294–301. https://doi.org/10.4047/jap.2017.9.4.294

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Rosentritt M, Behr M, Lang R et al (2004) Flexural properties of prosthetic provisional polymers. Eur J Prosthodont Restor Dent 12(2):75–79

    PubMed  Google Scholar 

  13. 13.

    Rosentritt M, Siavikis G, Behr M, Kolbeck C, Handel G (2008) Approach for valuating the significance of laboratory simulation. J Dent 36(12):1048–1053. https://doi.org/10.1016/j.jdent.2008.09.001

    Article  PubMed  Google Scholar 

  14. 14.

    Rosentritt M, Behr M, Scharnagl P, Handel G, Kolbeck C (2011) Influence of resilient support of abutment teeth on fracture resistance of all-ceramic fixed partial dentures: an in vitro study. Int J Prosthodont 24(5):465–468

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    SANNINO G, GERMANO F, ARCURI L et al (2014) CEREC CAD/CAM chairside system. Oral Implantol (Rome) 7(3):57–70

    Google Scholar 

  16. 16.

    Alt V, Hannig M, Wostmann B et al (2011) Fracture strength of temporary fixed partial dentures: CAD/CAM versus directly fabricated restorations. Dent Mater 27(4):339–347. https://doi.org/10.1016/j.dental.2010.11.012

    Article  PubMed  Google Scholar 

  17. 17.

    Varga S, Spalj S, Lapter Varga M, Anic Milosevic S, Mestrovic S, Slaj M (2011) Maximum voluntary molar bite force in subjects with normal occlusion. Eur J Orthod 33(4):427–433. https://doi.org/10.1093/ejo/cjq097

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Peñate L, Basilio J, Roig M, Mercadé M (2015) Comparative study of interim materials for direct fixed dental prostheses and their fabrication with CAD/CAM technique. J Prosthet Dent 114(2):248–253. https://doi.org/10.1016/j.prosdent.2014.12.023

    Article  PubMed  Google Scholar 

  19. 19.

    Heintze SD, Reichl F-X, Hickel R (2019) Wear of dental materials: clinical significance and laboratory wear simulation methods -a review. Dent Mater J 38:343–353. https://doi.org/10.4012/dmj.2018-140

    Article  PubMed  Google Scholar 

  20. 20.

    Lambrechts P, Braem M, Vuylsteke-Wauters M, Vanherle G (1989) Quantitative in vivo wear of human enamel. J Dent Res 68(12):1752–1754. https://doi.org/10.1177/00220345890680120601

    Article  PubMed  Google Scholar 

  21. 21.

    Heintze S (2019) Predictability of clinical wear by laboratory wear methods for the evaluation of dental restorative materials

  22. 22.

    Barsby MJ (1992) A denture base resin with low water absorption. J Dent 1992(20):240–244

    Article  Google Scholar 

  23. 23.

    Santos C, Clarke RL, Braden M, Guitian F, Davy KWM (2002) Water absorption characteristics of dental composites incorporating hydroxyapatite filler. Biomaterials 23(8):1897–1904. https://doi.org/10.1016/S0142-9612(01)00331-3

    Article  PubMed  Google Scholar 

  24. 24.

    Braden, M: Clarke, RL, Nicholson J, Parker S (1997) Polymeric dental materials. Macromolecular Systems - Materials Approach: 51–90., Berlin, Heidelberg, Springer

  25. 25.

    Buergers R, Rosentritt M, Handel G (2007) Bacterial adhesion of Streptococcus mutans to provisional fixed prosthodontic material. J Prosthet Dent 98(6):461–469. https://doi.org/10.1016/S0022-3913(07)60146-2

    Article  PubMed  Google Scholar 

  26. 26.

    Hancock BC, Zografi G (1994) The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm Res 1994:471–477

    Article  Google Scholar 

  27. 27.

    Lang R, Rosentritt M, Behr M et al (2003) Fracture resistance of PMMA and resin matrix composite-based interim FPD materials. Int J Prosthodont 16(4):381–384

    PubMed  Google Scholar 

Download references


We would like to thank the Ivoclar Vivadent for providing the materials.

Author information



Corresponding author

Correspondence to Martin Rosentritt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sari, T., Usumez, A., Strasser, T. et al. Temporary materials: comparison of in vivo and in vitro performance. Clin Oral Invest (2020). https://doi.org/10.1007/s00784-020-03278-5

Download citation


  • Temporary materials
  • Provisional materials
  • In vitro testing
  • In vivo investigation
  • TCML
  • Roughness
  • Wear
  • Fracture force