Differential skeletal and dental effects after orthodontic treatment with bite jumping appliance or activator: a retrospective cephalometric study



The aim of this retrospective cephalometric study was to compare treatment outcomes with “bite jumping appliance” (BJA) or Andresen-Häupl type activator. It especially focused on skeletal and dental structures in patients with class II malocclusion. The study hypothesis was that differences in treatment-related changes would occur between patients treated with BJA or activator.

Material and methods

Pre- and posttreatment lateral cephalograms of 73 patients with a class II malocclusion were analyzed. Thirty-seven patients (22 females, 15 males) received treatment with a BJA (pretreatment age 11.1 ± 1.07 years) and 36 patients (20 females, 16 males) with an activator (pretreatment age 11.3 ± 1.12 years). Treatment time was 14.0 ± 1.8 months with BJA and 12.0 ± 2.0 months with activator. Paired t tests were used for intragroup and t tests for independent samples for intergroup comparisons. Results were considered statistically significant at P < 0.05.


The comparison of sagittal and vertical skeletal changes after BJA and activator treatment did not reveal significant differences. Significant changes occurred for lower incisor inclination (P = 0.0367) and overjet (P = 0.0125) only. The reduction of overjet and proclination of lower incisors were more pronounced in BJA patients.


Both “bite jumping appliance” (BJA) and Andresen-Häupl type activator were able to improve the occlusion of patients with a class II malocclusion. Dental effects were more pronounced for the BJA.

Clinical relevance

Marked lower incisor proclination contributed significantly to overjet correction in BJA patients. This ought to be respected when choosing a removable functional appliance for patients whose lower incisors are already proclined prior to treatment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    DiBiase AT, Cobourne MT, Lee RT (2015) The use of functional appliances in contemporary orthodontic practice. Br Dent J 218:123–128

    PubMed  Google Scholar 

  2. 2.

    Rudzki-Janson I, Noachtar R (1998) Functional appliance therapy with the Bionator. Semin Orthod 4:33–45

    PubMed  Google Scholar 

  3. 3.

    Robin P (1902) Observation sur un nouvel appareil de redressement. Rev Stomatol 9:423–432

    Google Scholar 

  4. 4.

    Robin P (1902) Démonstration pratique sur la construction et la mise en bouche d'un nouvelle appareil de redressement. Rev Stomatol 9:561–590

    Google Scholar 

  5. 5.

    Andresen V, Häupl K (1936) Funktionskieferorthopädie. Verlag von Hermann Meusser, Leipzig

    Google Scholar 

  6. 6.

    Bishara SE, Ziaja RR (1989) Functional appliances: a review. Am J Orthod Dentofac Orthop 95:250–258

    Google Scholar 

  7. 7.

    Collett AR (2000) Current concepts on functional appliances and mandibular growth stimulation. Aust Dent J 45:173–178

    PubMed  Google Scholar 

  8. 8.

    Tränkmann J (1985) Die Plattenapparatur in der Kieferorthopädie. Quintessenz, Berlin

    Google Scholar 

  9. 9.

    Clark WJ (1982) The Twin Block traction technique. Eur J Orthod 4:129–138

    PubMed  Google Scholar 

  10. 10.

    Sander FG, Wichelhaus A (1995) Skeletal and dental changes during the use of the bite-jumping plate. A cephalometric comparison with an untreated class-II group. Fortschr Kieferorthop 56:127–139

    PubMed  Google Scholar 

  11. 11.

    Wedler S, Tränkmann J, Lisson JA (2006) Treatment outcome in angle class II, division 1 patients in pre-puberty and puberty after jumping-the-bite appliance. J Orofac Orthop 67:105–115

    PubMed  Google Scholar 

  12. 12.

    Stec-Slonicz M, Weindel S, Paurevic S, Lisson JA (2008) Arch changes after class II, division 1 treatment with jumping-the-bite appliances. J Orofac Orthop 69:373–382

    PubMed  Google Scholar 

  13. 13.

    Lisson JA, Tränkmann J (2002) Effects of angle class II, division 1 treatment with jumping-the-bite appliances. A longitudinal study. J Orofac Orthop 63:14–25

    PubMed  Google Scholar 

  14. 14.

    O'Brien K, Wright J, Conboy F, Sanjie Y, Mandall N, Chadwick S, Connolly I, Cook P, Birnie D, Hammond M, Harradine N, Lewis D, McDade C, Mitchell L, Murray A, O'Neill J, Read M, Robinson S, Roberts-Harry D, Sandler J, Shaw I (2003) Effectiveness of early orthodontic treatment with the Twin-Block appliance: a multicenter, randomized, controlled trial. Part 1: dental and skeletal effects. Am J Orthod Dentofac Orthop 124:234–243

    Google Scholar 

  15. 15.

    Burhan AS, Nawaya FR (2015) Dentoskeletal effects of the bite-jumping appliance and the Twin-Block appliance in the treatment of skeletal class II malocclusion: a randomized controlled trial. Eur J Orthod 37:330–337

    PubMed  Google Scholar 

  16. 16.

    Martina R, Cioffi I, Galeotti A, Tagliaferri R, Cimino R, Michelotti A, Valletta R, Farella M, Paduano S (2013) Efficacy of the Sander bite-jumping appliance in growing patients with mandibular retrusion: a randomized controlled trial. Orthod Craniofacial Res 16:116–126

    Google Scholar 

  17. 17.

    De Almeida MR, Henriques JF, Ursi W (2002) Comparative study of the Frankel (FR-2) and bionator appliances in the treatment of class II malocclusion. Am J Orthod Dentofac Orthop 121:458–466

    Google Scholar 

  18. 18.

    Jena AK, Duggal R, Parkash H (2006) Skeletal and dentoalveolar effects of Twin-Block and bionator appliances in the treatment of class II malocclusion: a comparative study. Am J Orthod Dentofac Orthop 130:594–602

    Google Scholar 

  19. 19.

    Illing HM, Morris DO, Lee RT (1998) A prospective evaluation of bass, Bionator and Twin Block appliances. Part I--the hard tissues. Eur J Orthod 20:501–516

    PubMed  Google Scholar 

  20. 20.

    Baccetti T, Franchi L, McNamara JA (2002) An improved version of the cervical vertebral maturation (CVM) method for the assessment of mandibular growth. Angle Orthod 72:316–323

    PubMed  Google Scholar 

  21. 21.

    Schopf P (2008) Curriculum Kieferorthopädie. Band I. Quintessenz-Verlag, Berlin

  22. 22.

    Cericato GO, Bittencourt MA, Paranhos LR (2015) Validity of the assessment method of skeletal maturation by cervical vertebrae: a systematic review and meta-analysis. Dentomaxillofac Radiol 44:20140270

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Koretsi V, Zymperdikas VF, Papageorgiou SN, Papadopoulos MA (2015) Treatment effects of removable functional appliances in patients with class II malocclusion: a systematic review and meta-analysis. Eur J Orthod 37:418–434

    PubMed  Google Scholar 

  24. 24.

    Dahlberg G (1940) Statistical methods for medical and biological students. Interscience Publications, New York

    Google Scholar 

  25. 25.

    Sander FG, Lassak C (1990) The modification of growth with the jumping-the-bite plate compared to other functional orthodontic appliances. Fortschr Kieferorthop 51:155–164

    PubMed  Google Scholar 

  26. 26.

    IRCP (2001) Radiation and your patient - a guide for medical practitioners. ICRP supporting guidance 2. Available at: http://www.icrp.org/publication.asp?id=ICRP%20Supporting%20Guidance%202 accessed:2019-19-05. Ann IRCP 31

  27. 27.

    Hassel B, Farman AG (1995) Skeletal maturation evaluation using cervical vertebrae. Am J Orthod Dentofac Orthop 107:58–66

    Google Scholar 

  28. 28.

    San Roman P, Palma JC, Oteo MD, Nevado E (2002) Skeletal maturation determined by cervical vertebrae development. Eur J Orthod 24:303–311

    PubMed  Google Scholar 

  29. 29.

    Flores-Mir C, Burgess CA, Champney M, Jensen RJ, Pitcher MR, Major PW (2006) Correlation of skeletal maturation stages determined by cervical vertebrae and hand-wrist evaluations. Angle Orthod 76:1–5

    PubMed  Google Scholar 

  30. 30.

    Lai EH, Liu JP, Chang JZ, Tsai SJ, Yao CC, Chen MH, Chen YJ, Lin CP (2008) Radiographic assessment of skeletal maturation stages for orthodontic patients: hand-wrist bones or cervical vertebrae? J Formos Med Assoc 107:316–325

    PubMed  Google Scholar 

  31. 31.

    Basciftci FA, Uysal T, Buyukerkmen A, Sari Z (2003) The effects of activator treatment on the craniofacial structures of class II division 1 patients. Eur J Orthod 25:87–93

    PubMed  Google Scholar 

  32. 32.

    Pancherz H (1982) The mechanism of class II correction in Herbst appliance treatment. A cephalometric investigation. Am J Orthod 82:104–113

    PubMed  Google Scholar 

  33. 33.

    Antonarakis GS, Kiliaridis S (2007) Short-term anteroposterior treatment effects of functional appliances and extraoral traction on class II malocclusion. Angle Orthod 77:907–914

    PubMed  Google Scholar 

  34. 34.

    Cozza P, De Toffol L, Iacopini L (2004) An analysis of the corrective contribution in activator treatment. Angle Orthod 74:741–748

    PubMed  Google Scholar 

  35. 35.

    Hönn M, Schneider C, Dietz K, Godt A, Göz G (2006) Treating class II patients with removable plates and functional orthopedic appliances. J Orofac Orthop 67:272–288

    PubMed  Google Scholar 

  36. 36.

    Lux CJ, Rubel J, Starke J, Conradt C, Stellzig PA, Komposch PG (2001) Effects of early activator treatment in patients with class II malocclusion evaluated by thin-plate spline analysis. Angle Orthod 71:120–126

    PubMed  Google Scholar 

  37. 37.

    Calvert FJ (1982) An assessment of Andresen therapy on class II division 1 malocclusion. Br J Orthod 9:149–153

    PubMed  Google Scholar 

  38. 38.

    Fischbach H, Kahl-Nieke B (1995) The treatment of skeietal class II with removable appliances - a retrospective evaluation. J Orofac Orthop 56:140–147

    Google Scholar 

  39. 39.

    van der Linden FPGM (1971) A study of roentgenocephalometric bony landmarks. Am J Orthod 59:111–125

    PubMed  Google Scholar 

  40. 40.

    Al-Abdwani R, Moles DR, Noar JH (2009) Change of incisor inclination effects on points A and B. Angle Orthod 79:462–467

    PubMed  Google Scholar 

  41. 41.

    Al-Nimri KS, Hazza'a AM, Al-Omari RM (2009) Maxillary incisor proclination effect on the position of point a in class II division 2 malocclusion. Angle Orthod 79:880–884

    PubMed  Google Scholar 

  42. 42.

    Kinzinger G, Diedrich P (2005) Skeletal effects in class II treatment with the functional mandibular advancer (FMA)? J Orofac Orthop 66:469–490

    PubMed  Google Scholar 

  43. 43.

    Bhatia SN, Leighton BC (1993) A manual of facial growth. A computer analysis of longitudinal cephalometric growth data. Oxford University Press, Oxford

    Google Scholar 

  44. 44.

    Jamilian A, Showkatbakhsh R, Amiri SS (2011) Treatment effects of the R-appliance and Twin Block in class II division 1 malocclusion. Eur J Orthod 33:354–358

    PubMed  Google Scholar 

  45. 45.

    Schott TC, Ludwig B, Glasl B, Lisson JA (2011) A microsensor for monitoring removable-appliance wear. J Clin Orthod 45:518–520

    PubMed  Google Scholar 

  46. 46.

    Brierley CA, Benson PE, Sandler J (2017) How accurate are TheraMon(R) microsensors at measuring intraoral wear-time? Recorded vs. actual wear times in five volunteers. J Orthod 44:241–248

    PubMed  Google Scholar 

  47. 47.

    Baumrind S, Frantz RC (1971) The reliability of head film measurements. 1. Landmark identification. Am J Orthod 60:111–127

    PubMed  Google Scholar 

  48. 48.

    Hirschfelder U, Fleischer-Peters A (1993) Kritische Bewertung funktionskieferorthopädisch behandelter Klasse-II-Anomalien. Fortschr Kieferorthop 54:237–248

    PubMed  Google Scholar 

  49. 49.

    Levin KA (2006) Study design V. Case–control studies. Evid Based Dent 7:83–84

  50. 50.

    von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP (2007) The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370:1453–1457

    Google Scholar 

  51. 51.

    Jarabak JR and Fizzel JA (1972) Light-wire edgewise appliance, Vol. I Mosby, St. Louis

  52. 52.

    Kirschneck C, Römer P, Proff P, Lippold C (2013) Association of dentoskeletal morphology with incisor inclination in angle class II patients: a retrospective cephalometric study. Head Face Med 9:24

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Al-Khateeb EA, Al-Khateeb SN (2009) Anteroposterior and vertical components of class II division 1 and division 2 malocclusion. Angle Orthod 79:859–866

    PubMed  Google Scholar 

  54. 54.

    Pancherz H, Zieber K, Hoyer B (1997) Cephalometric characteristics of class II division 1 and class II division 2 malocclusions: a comparative study in children. Angle Orthod 67:111–120

    PubMed  Google Scholar 

  55. 55.

    Brezniak N, Arad A, Heller M, Dinbar A, Dinte A, Wasserstein A (2002) Pathognomonic cephalometric characteristics of angle class II division 2 malocclusion. Angle Orthod 72:251–257

    PubMed  Google Scholar 

  56. 56.

    Isik F, Nalbantgil D, Sayinsu K, Arun T (2006) A comparative study of cephalometric and arch width characteristics of class II division 1 and division 2 malocclusions. Eur J Orthod 28:179–183

    PubMed  Google Scholar 

  57. 57.

    Wichelhaus A, Sander FG (1995) The dental and skeletal effects of the jumping-the-bite plate and high-pull headgear combination. A clinical study of treated patients. Fortschr Kieferorthop 56:202–215

    PubMed  Google Scholar 

  58. 58.

    Wichelhaus A (1993) Die Vorschubdoppelplatte - Modifikationen und deren Einsatzbereich. Teil 1: Kombination der Vorschubdoppelplatte mit einem Low-Pull-Headgear (I). Quintessenz 44:1295–1306

    Google Scholar 

  59. 59.

    Wichelhaus A (1993) Die Vorschubdoppelplatte - Modifikationen und deren Einsatzbereich. Teil 1: Kombination der Vorschubdoppelplatte mit einem Low-Pull-Headgear (II). Quintessenz 44:1469–1479

    Google Scholar 

  60. 60.

    Wichelhaus A (1993) Die Vorschubdoppelplatte - Modifikationen und deren Einsatzbereich. Teil 2: Kombination der Vorschubdoppelplatte mit einem High-Pull-Headgear (I). Quintessenz 44:1637–1647

    Google Scholar 

  61. 61.

    Wichelhaus A (1993) Die Vorschubdoppelplatte - Modifikationen und deren Einsatzbereich. Teil 2: Kombination der Vorschubdoppelplatte mit einem High-Pull-Headgear (II). Quintessenz 44:1799–1811

    Google Scholar 

  62. 62.

    Bendeus M, Hagg U, Rabie B (2002) Growth and treatment changes in patients treated with a headgear-activator appliance. Am J Orthod Dentofac Orthop 121:376–384

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jan Hourfar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. Ethical approval for this retrospective study was granted by the Ethics Commission of University of Aachen, Germany, No. 171/08.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hourfar, J., Kinzinger, G.S.M., Euchner, L. et al. Differential skeletal and dental effects after orthodontic treatment with bite jumping appliance or activator: a retrospective cephalometric study. Clin Oral Invest 24, 2513–2521 (2020). https://doi.org/10.1007/s00784-019-03115-4

Download citation


  • Activator
  • Bite jumping appliance
  • Class II correction
  • Removable functional appliance