Skip to main content

Advertisement

Log in

Effect of static compressive force on in vitro cultured PDL fibroblasts: monitoring of viability and gene expression over 6 days

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The aim was to investigate the impact of static compressive force (CF) application on human PDL-derived fibroblasts (HPDF) in vitro for up to 6 days on the expression of specific genes and to monitor cell growth and cell viability.

Materials and methods

CF of 2 g/cm2 was applied on HPDFs for 1–6 days. On each day, gene expression (cFOS, HB-GAM, COX2, IL6, TNFα, RUNX2, and P2RX2) and secretion (TNFα, PGE2) were determined by RT-qPCR and ELISA, respectively. Cell growth and cell viability were monitored daily.

Results

In comparison with controls, significant upregulation of cFOS in compressed HPDFs was observed. HB-GAM showed no changes in expression, except on day 5 (P < 0.001). IL6 expression was significantly upregulated from day 2–5, reaching the maximum on day 3 (P < 0.001). TNFα expression was upregulated on all but day 2. COX2 showed upregulation, reaching the plateau from day 3 (P < 0.001) until day 4 (P < 0.001), and returning to the initial state till day 6. P2RX7 was downregulated on days 2 and 4 to 6 (P < 0.001). RUNX2 was downregulated on days 2 and 5 (both P < 0.001). Cells in both groups were proliferating, and no negative effect on cell viability was observed.

Conclusion

Results suggest high molecular activity up to 6 days, therefore introducing further need for in vitro studies with a longer duration that would explain other genes and metabolites involved in orthodontic tooth movement (OTM).

Clinical relevance

Extension of an established in vitro force application system for prolonged force application (6 days) simulating the initial phase of OTM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reitan K (1960) Tissue behavior during orthodontic tooth movement. Am J Orthod 46(12):881–900. https://doi.org/10.1016/0002-9416(60)90091-9

    Article  Google Scholar 

  2. Davidovitch Z (1991) Tooth movement. Crit Rev Oral Biol Med 2(4):411–450. https://doi.org/10.1177/10454411910020040101

    Article  PubMed  Google Scholar 

  3. Marchesan JT, Scanlon CS, Soehren S, Matsuo M, Kapila YL (2011) Implications of cultured periodontal ligament cells for the clinical and experimental setting: a review. Arch Oral Biol 56(10):933–943. https://doi.org/10.1016/j.archoralbio.2011.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  4. Krishnan V, Davidovitch Z (2006) Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofac Orthop 129(4):469.e1–469.32. https://doi.org/10.1016/j.ajodo.2005.10.007

    Article  Google Scholar 

  5. Yang L, Yang Y, Wang S, Li Y, Zhao Z (2015) In vitro mechanical loading models for periodontal ligament cells: from two-dimensional to three-dimensional models. Arch Oral Biol 60(3):416–424. https://doi.org/10.1016/j.archoralbio.2014.11.012

    Article  PubMed  Google Scholar 

  6. Kanai K, Nohara H, Hanada K (1992) Initial effects of continuously applied compressive stress to human periodontal ligament fibroblasts. Nihon Kyosei Shika Gakkai Zasshi 51:153–163

    Google Scholar 

  7. Kanzaki H, Chiba M, Shimizu Y, Mitani H (2002) Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor κB ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res 17(2):210–220. https://doi.org/10.1359/jbmr.2002.17.2.210

    Article  PubMed  Google Scholar 

  8. Nakajima R, Yamaguchi M, Kojima T, Takano M, Kasai K (2008) Effects of compression force on fibroblast growth factor-2 and receptor activator of nuclear factor kappa B ligand production by periodontal ligament cells in vitro. J Periodontal Res 43(2):168–173. https://doi.org/10.1111/j.1600-0765.2007.01008.x

    Article  PubMed  Google Scholar 

  9. Janjic M, Docheva D, Trickovic Janjic O, Wichelhaus A, Baumert U (2018) In vitro weight-loaded cell models for understanding mechanodependent molecular pathways involved in orthodontic tooth movement: a systematic review. Stem Cells Int 2018:3208285. https://doi.org/10.1155/2018/3208285

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vansant L, Cadenas De Llano-Perula M, Verdonck A, Willems G (2018) Expression of biological mediators during orthodontic tooth movement: a systematic review. Arch Oral Biol 95:170–186. https://doi.org/10.1016/j.archoralbio.2018.08.003

    Article  PubMed  Google Scholar 

  11. Schröder A, Bauer K, Spanier G, Proff P, Wolf M, Kirschneck C (2018) Expression kinetics of human periodontal ligament fibroblasts in the early phases of orthodontic tooth movement. J Orofac Orthop 79(5):337–351. https://doi.org/10.1007/s00056-018-0145-1

    Article  PubMed  Google Scholar 

  12. Somerman MJ, Archer SY, Imm GR, Foster RA (1988) A comparative study of human periodontal ligament cells and gingival fibroblasts in vitro. J Dent Res 67(1):66–70. https://doi.org/10.1177/00220345880670011301

    Article  PubMed  Google Scholar 

  13. Ng KW, Schantz J-T (2010) A manual for primary human cell culture, vol 6. Manuals in Biomedical Research, 2nd edn. World Scientific, Hackensack

    Book  Google Scholar 

  14. Docheva D, Padula D, Popov C, Weishaupt P, Prägert M, Miosge N, Hickel R, Böcker W, Clausen-Schaumann H, Schieker M (2010) Establishment of immortalized periodontal ligament progenitor cell line and its behavioural analysis on smooth and rough titanium surface. Eur Cell Mater 19:228–241. https://doi.org/10.22203/eCM.v019a22

  15. Bustin SA, Beaulieu JF, Huggett J, Jaggi R, Kibenge FS, Olsvik PA, Penning LC, Toegel S (2010) MIQE précis: practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Mol Biol 11:74. https://doi.org/10.1186/1471-2199-11-74

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shi J, Baumert U, Folwaczny M, Wichelhaus A (2019) Influence of static forces on the expression of selected parameters of inflammation in periodontal ligament cells and alveolar bone cells in a co-culture in vitro model. Clin Oral Investig 23(6):2617–2628. https://doi.org/10.1007/s00784-018-2697-2

    Article  PubMed  Google Scholar 

  17. Friedl G, Schmidt H, Rehak I, Kostner G, Schauenstein K, Windhager R (2007) Undifferentiated human mesenchymal stem cells (hMSCs) are highly sensitive to mechanical strain: transcriptionally controlled early osteo-chondrogenic response in vitro. Osteoarthr Cartil 15(11):1293–1300. https://doi.org/10.1016/j.joca.2007.04.002

    Article  PubMed  Google Scholar 

  18. Bustin SA (2012) Definitive qPCR: assay design. Version: v.1.6 (02 march 2013). URL: https://sellfy.com/p/iQfl/ (URL accessed 11-06-2019)

  19. Thornton B, Basu C (2015) Rapid and simple method of qPCR primer design. Methods Mol Biol 1275:173–179. https://doi.org/10.1007/978-1-4939-2365-6_13

    Article  PubMed  Google Scholar 

  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  Google Scholar 

  21. Hellemans J, Vandesompele J (2011) Quantitative PCR data analysis - unlocking the secret to successful results. In: Kennedy S, Oswald N (eds) PCR troubleshooting and optimization : the essential guide. Caister Academic Press, Norfolk, pp 139–150

    Google Scholar 

  22. Kang KL, Lee SW, Ahn YS, Kim SH, Kang YG (2013) Bioinformatic analysis of responsive genes in two-dimension and three-dimension cultured human periodontal ligament cells subjected to compressive stress. J Periodontal Res 48(1):87–97. https://doi.org/10.1111/j.1600-0765.2012.01507.x

    Article  PubMed  Google Scholar 

  23. Benjakul S, Jitpukdeebodintra S, Leethanakul C (2018) Effects of low magnitude high frequency mechanical vibration combined with compressive force on human periodontal ligament cells in vitro. Eur J Orthod 40(4):356–363. https://doi.org/10.1093/ejo/cjx062

    Article  PubMed  Google Scholar 

  24. Bougault C, Aubert-Foucher E, Paumier A, Perrier-Groult E, Huot L, Hot D, Duterque-Coquillaud M, Mallein-Gerin F (2012) Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes. PLoS One 7(5):e36964. https://doi.org/10.1371/journal.pone.0036964

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bao X, Clark CB, Frangos JA (2000) Temporal gradient in shear-induced signaling pathway: involvement of MAP kinase, c-fos, and connexin43. Am J Physiol Heart Circ Physiol 278(5):H1598–H1605. https://doi.org/10.1152/ajpheart.2000.278.5.H1598

    Article  PubMed  Google Scholar 

  26. Kletsas D, Basdra EK, Papavassiliou AG (2002) Effect of protein kinase inhibitors on the stretch-elicited c-Fos and c-Jun up-regulation in human PDL osteoblast-like cells. J Cell Physiol 190(3):313–321. https://doi.org/10.1002/jcp.10052

    Article  PubMed  Google Scholar 

  27. Papadopoulou A, Iliadi A, Eliades T, Kletsas D (2017) Early responses of human periodontal ligament fibroblasts to cyclic and static mechanical stretching. Eur J Orthod 39(3):258–263. https://doi.org/10.1093/ejo/cjw075

    Article  PubMed  Google Scholar 

  28. Yamaguchi N, Chiba M, Mitani H (2002) The induction of c-fos mRNA expression by mechanical stress in human periodontal ligament cells. Arch Oral Biol 47(6):465–471. https://doi.org/10.1016/S0003-9969(02)00022-5

    Article  PubMed  Google Scholar 

  29. Popov C, Burggraf M, Kreja L, Ignatius A, Schieker M, Docheva D (2015) Mechanical stimulation of human tendon stem/progenitor cells results in upregulation of matrix proteins, integrins and MMPs, and activation of p38 and ERK1/2 kinases. BMC Mol Biol 16:6. https://doi.org/10.1186/s12867-015-0036-6

    Article  PubMed  PubMed Central  Google Scholar 

  30. Imai S, Heino TJ, Hienola A, Kurata K, Buki K, Matsusue Y, Vaananen HK, Rauvala H (2009) Osteocyte-derived HB-GAM (pleiotrophin) is associated with bone formation and mechanical loading. Bone 44(5):785–794. https://doi.org/10.1016/j.bone.2009.01.004

    Article  PubMed  Google Scholar 

  31. Imai S, Kaksonen M, Raulo E, Kinnunen T, Fages C, Meng X, Lakso M, Rauvala H (1998) Osteoblast recruitment and bone formation enhanced by cell matrix-associated heparin-binding growth-associated molecule (HB-GAM). J Cell Biol 143(4):1113–1128. https://doi.org/10.1083/jcb.143.4.1113

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xing W, Baylink D, Kesavan C, Hu Y, Kapoor S, Chadwick RB, Mohan S (2005) Global gene expression analysis in the bones reveals involvement of several novel genes and pathways in mediating an anabolic response of mechanical loading in mice. J Cell Biochem 96(5):1049–1060. https://doi.org/10.1002/jcb.20606

    Article  PubMed  Google Scholar 

  33. Grant M, Wilson J, Rock P, Chapple I (2013) Induction of cytokines, MMP9, TIMPs, RANKL and OPG during orthodontic tooth movement. Eur J Orthod 35(5):644–651. https://doi.org/10.1093/ejo/cjs057

    Article  PubMed  Google Scholar 

  34. Kunii R, Yamaguchi M, Tanimoto Y, Asano M, Yamada K, Goseki T, Kasai K (2013) Role of interleukin-6 in orthodontically induced inflammatory root resorption in humans. Korean J Orthod 43(6):294–301. https://doi.org/10.4041/kjod.2013.43.6.294

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yamada K, Yamaguchi M, Asano M, Fujita S, Kobayashi R, Kasai K (2013) Th17-cells in atopic dermatitis stimulate orthodontic root resorption. Oral Dis 19(7):683–693. https://doi.org/10.1111/odi.12053

    Article  PubMed  Google Scholar 

  36. Kirschneck C, Proff P, Maurer M, Reicheneder C, Römer P (2015) Orthodontic forces add to nicotine-induced loss of periodontal bone : an in vivo and in vitro study. J Orofac Orthop 76(3):195–212. https://doi.org/10.1007/s00056-015-0283-7

    Article  PubMed  Google Scholar 

  37. Proff P, Reicheneder C, Faltermeier A, Kubein-Meesenburg D, Römer P (2014) Effects of mechanical and bacterial stressors on cytokine and growth-factor expression in periodontal ligament cells. J Orofac Orthop 75(3):191–202. https://doi.org/10.1007/s00056-014-0212-1

  38. Kim SJ, Park KH, Park YG, Lee SW, Kang YG (2013) Compressive stress induced the up-regulation of M-CSF, RANKL, TNF-a expression and the down-regulation of OPG expression in PDL cells via the integrin-FAK pathway. Arch Oral Biol 58(6):707–716. https://doi.org/10.1016/j.archoralbio.2012.11.003

    Article  PubMed  Google Scholar 

  39. Mitsuhashi M, Yamaguchi M, Kojima T, Nakajima R, Kasai K (2011) Effects of HSP70 on the compression force-induced TNF-a and RANKL expression in human periodontal ligament cells. Inflamm Res 60(2):187–194. https://doi.org/10.1007/s00011-010-0253-x

    Article  PubMed  Google Scholar 

  40. Brändström H, Jonsson KB, Ohlsson C, Vidal O, Ljunghall S, Ljunggren Ö (1998) Regulation of osteoprotegerin mRNA levels by prostaglandin E2 in human bone marrow stroma cells. Biochem Biophys Res Commun 247(2):338–341. https://doi.org/10.1006/bbrc.1998.8783

  41. Kang YG, Nam JH, Kim KH, Lee KS (2010) FAK pathway regulates PGE2 production in compressed periodontal ligament cells. J Dent Res 89(12):1444–1449. https://doi.org/10.1177/0022034510378521

    Article  PubMed  Google Scholar 

  42. Mayahara K, Kobayashi Y, Takimoto K, Suzuki N, Mitsui N, Shimizu N (2007) Aging stimulates cyclooxygenase-2 expression and prostaglandin E2 production in human periodontal ligament cells after the application of compressive force. J Periodontal Res 42(1):8–14. https://doi.org/10.1111/j.1600-0765.2006.00885.x

    Article  PubMed  Google Scholar 

  43. Kirschneck C, Meier M, Bauer K, Proff P, Fanghänel J (2017) Meloxicam medication reduces orthodontically induced dental root resorption and tooth movement velocity: a combined in vivo and in vitro study of dental-periodontal cells and tissue. Cell Tissue Res 368(1):61–78. https://doi.org/10.1007/s00441-016-2553-0

  44. Mayahara K, Yamaguchi A, Sakaguchi M, Igarashi Y, Shimizu N (2010) Effect of Ga-Al-As laser irradiation on COX-2 and cPLA2-a expression in compressed human periodontal ligament cells. Lasers Surg Med 42(6):489–493. https://doi.org/10.1002/lsm.20871

    Article  PubMed  Google Scholar 

  45. Grimm S, Wolff E, Walter C, Pabst AM, Mundethu A, Jacobs C, Wehrbein H, Jacobs C (2019) Influence of clodronate and compressive force on IL-1ss-stimulated human periodontal ligament fibroblasts. Clin Oral Investig:1–8. https://doi.org/10.1007/s00784-019-02930-z

  46. Wada S, Kanzaki H, Narimiya T, Nakamura Y (2017) Novel device for application of continuous mechanical tensile strain to mammalian cells. Biol Open 6(4):518–524. https://doi.org/10.1242/bio.023671

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kariya T, Tanabe N, Shionome C, Manaka S, Kawato T, Zhao N, Maeno M, Suzuki N, Shimizu N (2015) Tension force-induced ATP promotes osteogenesis through P2X7 receptor in osteoblasts. J Cell Biochem 116(1):12–21. https://doi.org/10.1002/jcb.24863

    Article  PubMed  Google Scholar 

  48. Shen T, Qiu L, Chang H, Yang Y, Jian C, Xiong J, Zhou J, Dong S (2014) Cyclic tension promotes osteogenic differentiation in human periodontal ligament stem cells. Int J Clin Exp Pathol 7(11):7872–7880

    PubMed  PubMed Central  Google Scholar 

  49. Wei F, Liu D, Feng C, Zhang F, Yang S, Hu Y, Ding G, Wang S (2015) microRNA-21 mediates stretch-induced osteogenic differentiation in human periodontal ligament stem cells. Stem Cells Dev 24(3):312–319. https://doi.org/10.1089/scd.2014.0191

    Article  PubMed  Google Scholar 

  50. Lee SY, Yoo HI, Kim SH (2015) CCR5-CCL axis in PDL during orthodontic biophysical force application. J Dent Res 94(12):1715–1723. https://doi.org/10.1177/0022034515603926

    Article  PubMed  Google Scholar 

  51. Viecilli RF, Katona TR, Chen J, Hartsfield JK Jr, Roberts WE (2009) Orthodontic mechanotransduction and the role of the P2X7 receptor. Am J Orthod Dentofacial Orthop 135(6):694.e1–694.16; discussion 694-695. https://doi.org/10.1016/j.ajodo.2008.10.018

    Article  Google Scholar 

  52. Kanjanamekanant K, Luckprom P, Pavasant P (2013) Mechanical stress-induced interleukin-1beta expression through adenosine triphosphate/P2X7 receptor activation in human periodontal ligament cells. J Periodontal Res 48(2):169–176. https://doi.org/10.1111/j.1600-0765.2012.01517.x

    Article  PubMed  Google Scholar 

  53. Xu XY, He XT, Wang J, Li X, Xia Y, Tan YZ, Chen FM (2019) Role of the P2X7 receptor in inflammation-mediated changes in the osteogenesis of periodontal ligament stem cells. Cell Death Dis 10(1):20. https://doi.org/10.1038/s41419-018-1253-y

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jacobs C, Walter C, Ziebart T, Grimm S, Meila D, Krieger E, Wehrbein H (2014) Induction of IL-6 and MMP-8 in human periodontal fibroblasts by static tensile strain. Clin Oral Investig 18(3):901–908. https://doi.org/10.1007/s00784-013-1032-1

    Article  PubMed  Google Scholar 

  55. Nazet U, Schröder A, Spanier G, Wolf M, Proff P, Kirschneck C (2019) Simplified method for applying static isotropic tensile strain in cell culture experiments with identification of valid RT-qPCR reference genes for PDL fibroblasts. Eur J Orthod. https://doi.org/10.1093/ejo/cjz052

  56. Nettelhoff L, Grimm S, Jacobs C, Walter C, Pabst AM, Goldschmitt J, Wehrbein H (2016) Influence of mechanical compression on human periodontal ligament fibroblasts and osteoblasts. Clin Oral Investig 20(3):621–629. https://doi.org/10.1007/s00784-015-1542-0

    Article  PubMed  Google Scholar 

  57. Shi J, Folwaczny M, Wichelhaus A, Baumert U (2019) Differences in RUNX2 and P2RX7 gene expression between mono- and coculture of human periodontal ligament cells and human osteoblasts under compressive force application. Orthod Craniofacial Res 23(6):2617–2628. https://doi.org/10.1111/ocr.12307

    Article  Google Scholar 

  58. Yamaguchi M, Garlet GP (2015) The role of inflammation in defining the type and pattern of tissue response in orthodontic tooth movement. In: Krishnan V, Davidovitch Z (eds) Biological mechanisms of tooth movement, 2nd edn. Wiley Blackwell, Chichester, pp 121–137

    Chapter  Google Scholar 

  59. Baumert U, Golan I, Becker B, Hrala BP, Redlich M, Roos HA, Palmon A, Reichenberg E, Müßig D (2004) Pressure simulation of orthodontic force in osteoblasts: a pilot study. Orthod Craniofacial Res 7(1):3–9. https://doi.org/10.1046/j.1601-6335.2003.00270.x

  60. Yamaguchi M, Shimizu N, Ozawa Y, Saito K, Miura S, Takiguchi H, Iwasawa T, Abiko Y (1997) Effect of tension-force on plasminogen activator activity from human periodontal ligament cells. J Periodontal Res 32(3):308–314. https://doi.org/10.1111/j.1600-0765.1997.tb00539.x

    Article  PubMed  Google Scholar 

  61. Kirschneck C, Proff P, Fanghänel J, Wolf M, Roldan JC, Römer P (2016) Reference genes for valid gene expression studies on rat dental, periodontal and alveolar bone tissue by means of RT-qPCR with a focus on orthodontic tooth movement and periodontitis. Ann Anat 204:93–105. https://doi.org/10.1016/j.aanat.2015.11.005

    Article  PubMed  Google Scholar 

  62. Kirschneck C, Batschkus S, Proff P, Köstler J, Spanier G, Schröder A (2017) Valid gene expression normalization by RT-qPCR in studies on hPDL fibroblasts with focus on orthodontic tooth movement and periodontitis. Sci Rep 7(1):14751. https://doi.org/10.1038/s41598-017-15281-0

  63. Vernet D, Nolazco G, Cantini L, Magee TR, Qian A, Rajfer J, Gonzalez-Cadavid NF (2005) Evidence that osteogenic progenitor cells in the human tunica albuginea may originate from stem cells: implications for Peyronie disease. Biol Reprod 73(6):1199–1210. https://doi.org/10.1095/biolreprod.105.041038

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Christine Schreindorfer and Lisa Müller (both from the Dept. of Orthodontics, LMU Munich) for their assistance in the lab work.

Funding

M.J.R. was funded by BAYHOST (Bayerisches Hochschulzentrum für Mittel-, Ost- und Südosteuropa, Regensburg, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Baumert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janjic Rankovic, M., Docheva, D., Wichelhaus, A. et al. Effect of static compressive force on in vitro cultured PDL fibroblasts: monitoring of viability and gene expression over 6 days. Clin Oral Invest 24, 2497–2511 (2020). https://doi.org/10.1007/s00784-019-03113-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-019-03113-6

Keywords

Navigation