Influence of accelerated ageing on the physical properties of CAD/CAM restorative materials

Abstract

Objectives

This study aims to investigate the influence of thermocycling on the physical properties of different CAD/CAM restorative materials and assess their ability to maintain energy dissipation capacities and damping effects.

Materials and methods

The results of a 3-point bending test were used to calculate flexural strength (FS), modulus of elasticity (ME), modulus of toughness (MT) and elastic recovery (ER) for three ceramic, twelve composite and five polymer-based materials. Specimens (n = 10, 4.0 × 1.5 × 17.0 mm3) were loaded until rupture after water storage (24 h; 37.0 ± 1.0 °C) or thermocycling (5000 cycles; 5–55 °C). Statistical data analysis was performed using parametric statistics (p = 0.05).

Results

Thermocycling had no significant influence on any investigated properties of ceramic materials (p > 0.05). Hybrid composites showed significant differences between water storage and thermocycling (p < 0.05), with the exception of FS of Tetric CAD. Similarly, ME with AMBARINO High-Class, CERASMART, Tetric CAD and Vita Enamic and MT and ER with Paradigm and Tetric CAD were not affected. For polymer-based materials, significant differences were found with the exceptions of FS (PEEK-OPTIMA, Telio CAD), ME (M-PM Disc, PEEK-OPTIMA, Telio CAD, Vita CAD-Temp), MT (Telio CAD) and ER (Telio CAD).

Conclusions

The material properties of composite and polymer-based CAD/CAM materials were susceptible to degradation processes induced by thermocycling. Only Telio CAD and Tetric CAD showed no significant effects like all ceramic materials, thus preserving their inherent ability to elastically and plastically dissipate energy.

Clinical relevance

A careful material selection is advisable when planning CAD/CAM restorations as remarkable differences may exist in the durability of physical characteristics through the impact of water.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    Ashing in air (1 h, 700 ± 20 °C)

References

  1. 1.

    Zaytsev D, Panfilov P (2014) Deformation behavior of human enamel and dentin-enamel junction under compression. Mater Sci Eng C Mater Biol Appl 34:15–21. https://doi.org/10.1016/j.msec.2013.10.009/S0928-4931(13)00577-8

    Article  PubMed  Google Scholar 

  2. 2.

    Kahler B, Swain MV, Moule A (2003) Fracture-toughening mechanisms responsible for differences in work to fracture of hydrated and dehydrated dentine. J Biomech 36:229–237

    Article  Google Scholar 

  3. 3.

    Jameson MW, Hood JA, Tidmarsh BG (1993) The effects of dehydration and rehydration on some mechanical properties of human dentine. J Biomech 26:1055–1065

    Article  Google Scholar 

  4. 4.

    Currey JD, Landete-Castillejos T, Estevez J, Ceacero F, Olguin A, Garcia A, Gallego L (2009) The mechanical properties of red deer antler bone when used in fighting. J Exp Biol 212:3985–3993. https://doi.org/10.1242/jeb.032292

    Article  PubMed  Google Scholar 

  5. 5.

    Yan J, Daga A, Kumar R, Mecholsky JJ (2008) Fracture toughness and work of fracture of hydrated, dehydrated, and ashed bovine bone. J Biomech 41:1929–1936. https://doi.org/10.1016/j.jbiomech.2008.03.037

    Article  PubMed  Google Scholar 

  6. 6.

    Nyman JS, Roy A, Shen X, Acuna RL, Tyler JH, Wang X (2006) The influence of water removal on the strength and toughness of cortical bone. J Biomech 39:931–938

    Article  Google Scholar 

  7. 7.

    Kruzic JJ, Nalla RK, Kinney JH, Ritchie RO (2003) Crack blunting, crack bridging and resistance-curve fracture mechanics in dentin: effect of hydration. Biomaterials 24:5209–5221

    Article  Google Scholar 

  8. 8.

    Ferracane JL (2006) Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater 22:211–222

    Article  Google Scholar 

  9. 9.

    Ferracane JL, Marker VA (1992) Solvent degradation and reduced fracture toughness in aged composites. J Dent Res 71:13–19

    Article  Google Scholar 

  10. 10.

    van Groeningen G, Jongebloed W, Arends J (1986) Composite degradation in vivo. Dent Mater 2:225–227

    Article  Google Scholar 

  11. 11.

    Lohbauer U, Frankenberger R, Kramer N, Petschelt A (2003) Time-dependent strength and fatigue resistance of dental direct restorative materials. J Mater Sci Mater Med 14:1047–1053

    Article  Google Scholar 

  12. 12.

    Lohbauer U, Belli R, Ferracane JL (2013) Factors involved in mechanical fatigue degradation of dental resin composites. J Dent Res 92:584–591

    Article  Google Scholar 

  13. 13.

    Hampe R, Lumkemann N, Sener B, Stawarczyk B (2018) The effect of artificial aging on Martens hardness and indentation modulus of different dental CAD/CAM restorative materials. J Mech Behav Biomed Mater 86:191–198

    Article  Google Scholar 

  14. 14.

    Al-Harbi FA, Ayad NM, ArRejaie AS, Bahgat HA, Baba NZ (2017) Effect of aging regimens on resin nanoceramic chairside CAD/CAM material. J Prosthodont 26:432–439

    Article  Google Scholar 

  15. 15.

    Sonmez N, Gultekin P, Turp V, Akgungor G, Sen D, Mijiritsky E (2018) Evaluation of five CAD/CAM materials by microstructural characterization and mechanical tests: a comparative in vitro study. BMC Oral Health 18:5

    Article  Google Scholar 

  16. 16.

    Egilmez F, Ergun G, Cekic-Nagas I, Vallittu PK, Lassila LVJ (2018) Does artificial aging affect mechanical properties of CAD/CAM composite materials. J Prosthodont Res 62:65–74

    Article  Google Scholar 

  17. 17.

    Tsujimoto A, Barkmeier WW, Takamizawa T, Latta MA, Miyazaki M (2017) Influence of thermal cycling on flexural properties and simulated wear of computer-aided design/computer-aided manufacturing resin composites. Oper Dent 42:101–110

    Article  Google Scholar 

  18. 18.

    Lauvahutanon S, Takahashi H, Shiozawa M, Iwasaki N, Asakawa Y, Oki M, Finger WJ, Arksornnukit M (2014) Mechanical properties of composite resin blocks for CAD/CAM. Dent Mater J 33:705–710

    Article  Google Scholar 

  19. 19.

    Blackburn C, Rask H, Awada A (2018) Mechanical properties of resin-ceramic CAD-CAM materials after accelerated aging. J Prosthet Dent 119:954–958

    Article  Google Scholar 

  20. 20.

    Porto T, Roperto R, Campos E, Porto-Neto S, Teich S (2016) Behavior of CAD/CAM materials after long thermocycling process. Dent Mater 32S:e33

    Article  Google Scholar 

  21. 21.

    Porto TS, Roperto RC, Akkus A, Akkus O, Teich S, Faddoul FF, Porto-Neto ST, Campos EA (2018) Effect of thermal cycling on fracture toughness of CAD/CAM materials. Am J Dent 31:205–210

    PubMed  Google Scholar 

  22. 22.

    Okada R, Asakura M, Ando A, Kumano H, Ban S, Kawai T, Takebe J (2018) Fracture strength testing of crowns made of CAD/CAM composite resins. J Prosthodont Res 62:287–292

    Article  Google Scholar 

  23. 23.

    Beer FP, Johnston ER, DeWolf JT, Mazurek DF (2015) Mechanics of materials. McGraw-Hill Inc., New York, p 759

    Google Scholar 

  24. 24.

    Dyer SR, Lassila LV, Jokinen M, Vallittu PK (2005) Effect of cross-sectional design on the modulus of elasticity and toughness of fiber-reinforced composite materials. J Prosthet Dent 94:219–226

    Article  Google Scholar 

  25. 25.

    Smith ER, Allen MR (2013) Bisphosphonate-induced reductions in rat femoral bone energy absorption and toughness are testing rate-dependent. J Orthop Res 31:1317–1322

    Article  Google Scholar 

  26. 26.

    Niem T, Youssef N, Wostmann B (2019) Energy dissipation capacities of CAD-CAM restorative materials: a comparative evaluation of resilience and toughness. J Prosthet Dent 121:101–109

    Article  Google Scholar 

  27. 27.

    Shackelford JF (2015) Introduction to materials science for engineers. Pearson Education Inc., New York, p 168

  28. 28.

    Anusavice KJ (2003) Mechanical properties of dental materials. In: Anusavice KJ (ed) Phillips’ science of dental materials. WB Saunders Company, St. Louis, pp 73–101

    Google Scholar 

  29. 29.

    Williams JG (2001) Fracture mechanics testing methods for polymers, adhesives and composites. Elsevier Science Ltd., Amsterdam

    Google Scholar 

  30. 30.

    Grellmann W (2001) New developments in toughness evaluation of polymers and compounds by fracture machanics. In: Grellmann W, Seidler S (eds) Deformation and fracture behaviour of polymers. Springer, New York, pp 3–26

    Chapter  Google Scholar 

  31. 31.

    Cesar PF, Della Bona A, Scherrer SS, Tholey M, van Noort R, Vichi A, Kelly R, Lohbauer U (2017) ADM guidance-ceramics: fracture toughness testing and method selection. Dent Mater 33:575–584

    Article  Google Scholar 

  32. 32.

    Smith RL, Mecholsky JJ, Freiman SW (2009) Estimation of fracture energy from the work of fracture and fracture surface area: I. Stable crack growth. Int J Fract 156:97–102. https://doi.org/10.1007/s10704-009-9350-7

    Article  Google Scholar 

  33. 33.

    ISO (2015) ISO 6872, Dentistry—ceramic materials. International Organization for Standardization, Geneva

    Google Scholar 

  34. 34.

    ASTM (2017) D790-17:2017, Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. West Conshohocken, PA

  35. 35.

    ISO (2013) ISO 9513, Metallic materials—calibration of extensometer systems used in uniaxial testing. International Organization for Standardization, Geneva

    Google Scholar 

  36. 36.

    Daemi H, Rajabi-Zeleti S, Sardon H, Barikani M, Khademhosseini A, Baharvand H (2016) A robust super-tough biodegradable elastomer engineered by supramolecular ionic interactions. Biomaterials 84:54–63. https://doi.org/10.1016/j.biomaterials.2016.01.025/S0142-9612(16)00033-8 [pii]

    Article  PubMed  Google Scholar 

  37. 37.

    Kaizer MR, Almeida JR, Goncalves APR, Zhang Y, Cava SS, Moraes RR (2016) Silica coating of nonsilicate nanoparticles for resin-based composite materials. J Dent Res 95:1394–1400. https://doi.org/10.1177/0022034516662022

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Lopez-Suevos F, Dickens SH (2008) Degree of cure and fracture properties of experimental acid-resin modified composites under wet and dry conditions. Dent Mater 24:778–785. https://doi.org/10.1016/j.dental.2007.09.006

    Article  PubMed  Google Scholar 

  39. 39.

    Awada A, Nathanson D (2015) Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent 114:587–593. https://doi.org/10.1016/j.prosdent.2015.04.016/S0022-3913(15)00255-3

    Article  PubMed  Google Scholar 

  40. 40.

    Tjandrawinata R, Irie M, Suzuki K (2005) Flexural properties of eight flowable light-cured restorative materials, in immediate vs 24-hour water storage. Oper Dent 30:239–249

    PubMed  Google Scholar 

  41. 41.

    Prakki A, Pereira PN, Kalachandra S (2009) Effect of propionaldehyde or 2,3-butanedione additives on the mechanical properties of Bis-GMA analog-based composites. Dent Mater 25:26–32. https://doi.org/10.1016/j.dental.2008.05.002

    Article  PubMed  Google Scholar 

  42. 42.

    Peutzfeldt A, Asmussen E (1992) Modulus of resilience as predictor for clinical wear of restorative resins. Dent Mater 8:146–148

    Article  Google Scholar 

  43. 43.

    Lakens D (2013) Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol 4

  44. 44.

    Kausch HH, Gensler R, Grein C, Plummer CJG, Scaramuzzino P (1999) Crazing in semicrystalline thermoplastics. J Macromol Sci Phys B 38:803–815. https://doi.org/10.1080/00222349908248140

    Article  Google Scholar 

  45. 45.

    Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates, New York

    Google Scholar 

  46. 46.

    Chen PY, Lin AY, Lin YS, Seki Y, Stokes AG, Peyras J, Olevsky EA, Meyers MA, McKittrick J (2008) Structure and mechanical properties of selected biological materials. J Mech Behav Biomed Mater 1:208–226. https://doi.org/10.1016/j.jmbbm.2008.02.003

    Article  PubMed  Google Scholar 

  47. 47.

    Winwood K, Zioupos P, Currey JD, Cotton JR, Taylor M (2006) The importance of the elastic and plastic components of strain in tensile and compressive fatigue of human cortical bone in relation to orthopaedic biomechanics. J Musculoskelet Neuronal Interact 6:134–141

    PubMed  Google Scholar 

  48. 48.

    Bijjargi S, Chowdhary R (2013) Stress dissipation in the bone through various crown materials of dental implant restoration: a 2-D finite element analysis. J Investig Clin Dent 4:172–177. https://doi.org/10.1111/j.2041-1626.2012.00149.x

    Article  PubMed  Google Scholar 

  49. 49.

    Lauvahutanon S, Shiozawa M, Takahashi H, Iwasaki N, Oki M, Finger WJ, Arksornnukit M (2017) Discoloration of various CAD/CAM blocks after immersion in coffee. Restor Dent Endod 42:9–18

    Article  Google Scholar 

  50. 50.

    Ferracane JL, Berge HX, Condon JR (1998) In vitro aging of dental composites in water—effect of degree of conversion, filler volume, and filler/matrix coupling. J Biomed Mater Res 42:465–472

    Article  Google Scholar 

  51. 51.

    Ferracane JL, Condon JR (1991) Degradation of composites caused by accelerated aging. J Dent Res 70(Spec Iss 1):480. www.iadr.org

    Google Scholar 

  52. 52.

    Stawarczyk B, Ender A, Trottmann A, Ozcan M, Fischer J, Hammerle CH (2012) Load-bearing capacity of CAD/CAM milled polymeric three-unit fixed dental prostheses: effect of aging regimens. Clin Oral Investig 16:1669–1677. https://doi.org/10.1007/s00784-011-0670-4

    Article  PubMed  Google Scholar 

  53. 53.

    Edelhoff D, Schraml D, Eichberger M, Stawarczyk B (2016) Comparison of fracture loads of CAD/CAM and conventionally fabricated temporary fixed dental prostheses after different aging regimens. Int J Comput Dent 19:101–112

    PubMed  Google Scholar 

  54. 54.

    Wimmer T, Ender A, Roos M, Stawarczyk B (2013) Fracture load of milled polymeric fixed dental prostheses as a function of connector cross-sectional areas. J Prosthet Dent 110:288–295

    Article  Google Scholar 

  55. 55.

    Mohsen NM, Craig RG, Filisko FE (2001) The effects of moisture on the dielectric relaxation of urethane dimethacrylate polymer and composites. J Oral Rehabil 28:376–392

    Article  Google Scholar 

  56. 56.

    Soderholm KJ (1981) Degradation of glass filler in experimental composites. J Dent Res 60:1867–1875

    Article  Google Scholar 

  57. 57.

    Schrader ME, Block A (1971) Tracer study of kinetics and mechanism of hydrolytically induced interfacial failure. J Polym Sci Part C Polymer Symposium:281–291

  58. 58.

    Ishida H, Miller JD (1984) Substrate effects on the chemisorbed and physisorbed layers of methacryl silane modified particulate minerals. Macromolecules 17:1659–1666. https://doi.org/10.1021/ma00139a004

    Article  Google Scholar 

  59. 59.

    Plueddemann EP (1970) Adhesion through silane coupling agents. J Adhes 2:184–201. https://doi.org/10.1080/0021846708544592

    Article  Google Scholar 

  60. 60.

    Ivoclar Vivadent (2018) Tetric CAD: scientific documentation. Ivoclar Vivadent AG, Schaan. http://www.ivoclarvivadent.com/en/download-center/scientific-documentations. Accessed Jul 2018

  61. 61.

    Ivoclar Vivadent (2010) Telio CAD: scientific documentation. Ivoclar Vivadent AG, Schaan. http://www.ivoclarvivadent.com/en/download-center/scientific-documentations. Accessed 2010

  62. 62.

    VITA Zahnfabrik (2019) VITA ENAMIC: technical and scientific documentation. VITA Zahnfabrik H. Rauter GmbH & Co. KG, Bad Säckingen. https://mam.vita-zahnfabrik.com/portal/ecms_mdb_download.php?id=82333&sprache=en&fallback=&rechtsraum=&cls_session_id=&neuste_version=1. Accessed Feb 2019

Download references

Acknowledgements

The authors thank Antje Hübner for her technical assistance in sample preparation and data acquisition. We also thank Juvora Ltd. for donating PEEK-Optima. In addition, we gratefully acknowledge the support of our biostatistician Dr. Johannes Herrmann.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors. No external funding; the study is solely based on the department budgets of the authors.

Author information

Affiliations

Author notes

  1. Nivin Youssef is deceased. This paper is dedicated to her memory.

    • Nivin Youssef
Authors

Corresponding author

Correspondence to Thomas Niem.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Niem, T., Youssef, N. & Wöstmann, B. Influence of accelerated ageing on the physical properties of CAD/CAM restorative materials. Clin Oral Invest 24, 2415–2425 (2020). https://doi.org/10.1007/s00784-019-03101-w

Download citation

Keywords

  • CAD/CAM material
  • Thermocycling
  • Modulus of toughness
  • Elastic recovery
  • Resiliency
  • Energy dissipation