A new standardized critical size bone defect model in the pig forehead for comparative testing of bone regeneration materials

Abstract

Objectives

The preclinical study aimed to establish a standardized preclinical model to investigate osseous graft consolidation in defect configurations of limited regenerative capacity.

Material and methods

Critical size defects (CSD) were prepared and titanium tubes inserted for defect separation from local bone in the forehead area of 18 pigs. Defects were filled with demineralized bovine bone mineral (DBBM) or served as empty controls and were covered with a resorbable collagen membrane (CM) or left untreated. Six randomly selected pigs were sacrificed after 4, 8 and 12 weeks. Specimens were histologically and histomorphometrically analysed focusing on newly formed bone (NFB), demineralized bovine bone mineral (DBBM) and soft tissue (ST) proportions.

Results

Four weeks after defect preparation, no statistically significant difference concerning NFB quantity could be detected within the groups. Defects covered with the CM showed lower amounts of DBBM. After 6 and 12 weeks, defects augmented with DBBM in combination with a CM (8 weeks: 43.12 ± 4.31; 12 weeks: 43.05 ± 3.01) showed a statistically significant higher NFB rate compared to empty control defects covered with 8 weeks: 7.66 ± 0.59; 12 weeks or without a CM; 8 weeks: 8.62 ± 2.66; 12 weeks: 18.40 ± 2.40. CM application showed no significant impact on osseous defect regeneration or soft tissue formation. Superior NFB could be detected for basal aspect for several evaluation time points.

Conclusions

The modification of CSD with titanium tubes represents a suitable model to imitate a one-wall defect regeneration situation.

Clinical relevance

The established model represents a promising method to evaluate graft consolidation in one-wall defect configuration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Esposito M, Grusovin MG, Felice P, Karatzopoulos G, Worthington HV, Coulthard P (2009) Interventions for replacing missing teeth: horizontal and vertical bone augmentation techniques for dental implant treatment. Cochrane Database Syst Rev 4:CD003607. https://doi.org/10.1002/14651858.CD003607.pub4

    Article  Google Scholar 

  2. 2.

    Esposito M, Grusovin MG, Kwan S, Worthington HV, Coulthard P (2008) Interventions for replacing missing teeth: bone augmentation techniques for dental implant treatment. Cochrane Database Syst Rev 3:CD003607. https://doi.org/10.1002/14651858.CD003607.pub3

    Article  Google Scholar 

  3. 3.

    Rogers GF, Greene AK (2012) Autogenous bone graft: basic science and clinical implications. J Craniofac Surg 23(1):323–327. https://doi.org/10.1097/SCS.0b013e318241dcba

    Article  PubMed  Google Scholar 

  4. 4.

    Nkenke E, Schultze-Mosgau S, Radespiel-Troger M, Kloss F, Neukam FW (2001) Morbidity of harvesting of chin grafts: a prospective study. Clin Oral Implants Res 12(5):495–502

    Article  Google Scholar 

  5. 5.

    Schlegel KA, Lang FJ, Donath K, Kulow JT, Wiltfang J (2006) The monocortical critical size bone defect as an alternative experimental model in testing bone substitute materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102(1):7–13. https://doi.org/10.1016/j.tripleo.2005.09.011

    Article  PubMed  Google Scholar 

  6. 6.

    Swindle MM, Smith AC, Hepburn BJ (1988) Swine as models in experimental surgery. J Investig Surg 1(1):65–79

    Article  Google Scholar 

  7. 7.

    Schlegel KA, Rupprecht S, Petrovic L, Honert C, Srour S, von Wilmowsky C, Felszegy E, Nkenke E, Lutz R (2009) Preclinical animal model for de novo bone formation in human maxillary sinus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108(3):e37–e44. https://doi.org/10.1016/j.tripleo.2009.05.037

    Article  PubMed  Google Scholar 

  8. 8.

    von Wilmowsky C, Moest T, Nkenke E, Stelzle F, Schlegel KA (2014) Implants in bone: part II. Research on implant osseointegration: material testing, mechanical testing, imaging and histoanalytical methods. Oral Maxillofac Surg 18(4):355–372. https://doi.org/10.1007/s10006-013-0397-2

    Article  Google Scholar 

  9. 9.

    Schmitz JP, Hollinger JO (1986) The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res (205):299–308

  10. 10.

    Sirola K (1960) Regeneration of defects in the calvaria. An experimental study. Ann Med Exp Biol Fenn 38(Suppl 2):1–87

    PubMed  Google Scholar 

  11. 11.

    Cortellini P, Tonetti MS (2000) Focus on intrabony defects: guided tissue regeneration. Periodontol 2000(22):104–132

    Article  Google Scholar 

  12. 12.

    Pagni G, Pellegrini G, Giannobile WV, Rasperini G (2012) Postextraction alveolar ridge preservation: biological basis and treatments. Int J Dent 2012(151030):1–13. https://doi.org/10.1155/2012/151030

    Article  Google Scholar 

  13. 13.

    Saghaei M (2004) Random allocation software for parallel group randomized trials. BMC Med Res Methodol 9(4):26

    Article  Google Scholar 

  14. 14.

    Donath K, Breuner G (1982) A method for the study of undecalcified bones and teeth with attached soft tissues. The sage-Schliff (sawing and grinding) technique. J Oral Pathol 11(4):318–326

    Article  Google Scholar 

  15. 15.

    Moest T, Wehrhan F, Lutz R, Schmitt CM, Neukam FW, Schlegel KA (2015) Extra-oral defect augmentation using autologous, bovine and equine bone blocks: a preclinical histomorphometrical comparative study. J Craniomaxillofac Surg 43(4):559–566. https://doi.org/10.1016/j.jcms.2015.02.012

    Article  PubMed  Google Scholar 

  16. 16.

    Lutz R, Park J, Felszeghy E, Wiltfang J, Nkenke E, Schlegel KA (2008) Bone regeneration after topical BMP-2-gene delivery in circumferential peri-implant bone defects. Clin Oral Implants Res 19(6):590–599. https://doi.org/10.1111/j.1600-0501.2007.01526.x

    Article  PubMed  Google Scholar 

  17. 17.

    Moest T, Koehler F, Prechtl C, Schmitt C, Watzek G, Schlegel KA (2014) Bone formation in peri-implant defects grafted with microparticles: a pilot animal experimental study. J Clin Periodontol 41(10):990–998. https://doi.org/10.1111/jcpe.12295

    Article  PubMed  Google Scholar 

  18. 18.

    Stockmann P, Park J, von Wilmowsky C, Nkenke E, Felszeghy E, Dehner JF, Schmitt C, Tudor C, Schlegel KA (2012) Guided bone regeneration in pig calvarial bone defects using autologous mesenchymal stem/progenitor cells - a comparison of different tissue sources. J Craniomaxillofac Surg 40(4):310–320. https://doi.org/10.1016/j.jcms.2011.05.004

    Article  PubMed  Google Scholar 

  19. 19.

    Tudor C, Srour S, Thorwarth M, Stockmann P, Neukam FW, Nkenke E, Schlegel KA, Felszeghy E (2008) Bone regeneration in osseous defects-application of particulated human and bovine materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105(4):430–436. https://doi.org/10.1016/j.tripleo.2007.07.037

    Article  PubMed  Google Scholar 

  20. 20.

    Schlegel KA, Kloss FR, Kessler P, Schultze-Mosgau S, Nkenke E, Wiltfang J (2003) Bone conditioning to enhance implant osseointegration: an experimental study in pigs. Int J Oral Maxillofac Implants 18(4):505–511

    PubMed  Google Scholar 

  21. 21.

    Jensen J, Tvedesøe C, Rölfing JH, Foldager CB, Lysdahl H, Kraft DC, Chen M, Baas J, Le DQ, Bünger CE (2016) Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model. SICOT J 20(2):16. https://doi.org/10.1051/sicotj/2016004

    Article  Google Scholar 

  22. 22.

    Taga ML, Granjeiro JM, Cestari TM, Taga R (2008) Healing of critical-size cranial defects in Guinea pigs using a bovine bone-derived resorbable membrane. Int J Oral Maxillofac Implants 23(3):427–436

    PubMed  Google Scholar 

  23. 23.

    Eitel F, Seiler H, Schweiberer L (1981) Morphologic examination of animal-experiment results: comparison with regeneration of the human bone-structure. I. Research methods (author's transl). Unfallheilkunde 84(6):250–254

    PubMed  Google Scholar 

  24. 24.

    Reddi AH (1975) The matrix of rat calvarium as transformant of fibroblasts. Proc Soc Exp Biol Med 150(2):324–326

    Article  Google Scholar 

  25. 25.

    Hollinger JO, Kleinschmidt JC (1990) The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg 1(1):60–68

    Article  Google Scholar 

  26. 26.

    Busenlechner D, Tangl S, Mair B, Fugger G, Gruber R, Redl H, Watzek G (2008) Simultaneous in vivo comparison of bone substitutes in a guided bone regeneration model. Biomaterials 29(22):3195–3200. https://doi.org/10.1016/j.biomaterials.2008.04.021

    Article  PubMed  Google Scholar 

  27. 27.

    Zhu SJ, Choi BH, Huh JY, Jung JH, Kim BY, Lee SH (2006) A comparative qualitative histological analysis of tissue-engineered bone using bone marrow mesenchymal stem cells, alveolar bone cells, and periosteal cells. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101(2):164–169. https://doi.org/10.1016/j.tripleo.2005.04.006

    Article  PubMed  Google Scholar 

  28. 28.

    Lutz R, Sendlbeck C, Wahabzada H, Tudor C, Prechtl C, Schlegel KA (2017) Periosteal elevation induces supracortical peri-implant bone formation. J Craniomaxillofac Surg 45(8):1170–1178. https://doi.org/10.1016/j.jcms.2017.05.009

    Article  PubMed  Google Scholar 

  29. 29.

    Bauer TW, Muschler GF (2000) Bone graft materials. An overview of the basic science. Clin Orthop Relat Res 371(371):10–27

    Article  Google Scholar 

  30. 30.

    Rothamel D, Schwarz F, Herten M, Ferrari D, Mischkowski RA, Sager M, Becker J (2009) Vertical ridge augmentation using xenogenous bone blocks: a histomorphometric study in dogs. Int J Oral Maxillofac Implants 24(2):243–250

    PubMed  Google Scholar 

  31. 31.

    Araujo MG, Liljenberg B, Lindhe J (2010) Dynamics of bio-Oss collagen incorporation in fresh extraction wounds: an experimental study in the dog. Clin Oral Implants Res 21(1):55–64. https://doi.org/10.1111/j.1600-0501.2009.01854.x

    Article  PubMed  Google Scholar 

  32. 32.

    Busenlechner D, Tangl S, Arnhart C, Redl H, Schuh C, Watzek G, Gruber R (2012) Resorption of deproteinized bovine bone mineral in a porcine calvaria augmentation model. Clin Oral Implants Res 23(1):95–99. https://doi.org/10.1111/j.1600-0501.2011.02198.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The study was undertaken in cooperation with the Semmelweis-University, Budapest, Hungary. Animal care keeping and surgical procedures were performed in the laboratories of the Semmelweis-University, Budapest, Hungary. Specimen processing was done in the laboratories of the Department of Oral and Maxillofacial Surgery, University of Erlangen-Nürnberg, Erlangen, Germany. Geistlich Pharma AG, Wolhusen, Switzerland, supported this study. The authors have no conflicts of interest. The work of Dr. E. Felszeghy, A. Krautheim-Zenk and S. Schönherr is highly appreciated.

Funding

The work was supported by Geistlich Pharma AG, Wolhusen, Switzerland (KC 354-12036).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tobias Moest.

Ethics declarations

Conflict of interest

Tobias Moest declares that he has no conflict of interest. Karl Andreas Schlegel declares that he has no conflict of interest. Marco Kesting declares that he has no conflict of interest. Matthias Fenner declares that he has no conflict of interest. Rainer Lutz declares that he has no conflict of interest. Daniele Machado Beck declares that she has no conflict of interest. Cornelius von Wilmowsky declares that he has no conflict of interest.

Ethical approval

The presented work was approved by the Pest county government department for food safety and animal health, Hungary (approval number: 1112/000/2003).

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moest, T., Schlegel, K.A., Kesting, M. et al. A new standardized critical size bone defect model in the pig forehead for comparative testing of bone regeneration materials. Clin Oral Invest 24, 1651–1661 (2020). https://doi.org/10.1007/s00784-019-03020-w

Download citation

Keywords

  • Critical size defect
  • Bone substitutes
  • Demineralized bovine bone mineral
  • Animal model